MathFunctions.h 22.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2006-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H

namespace Eigen {

namespace internal {

/** \internal \struct global_math_functions_filtering_base
  *
  * What it does:
  * Defines a typedef 'type' as follows:
  * - if type T has a member typedef Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl, then
  *   global_math_functions_filtering_base<T>::type is a typedef for it.
  * - otherwise, global_math_functions_filtering_base<T>::type is a typedef for T.
  *
  * How it's used:
  * To allow to defined the global math functions (like sin...) in certain cases, like the Array expressions.
  * When you do sin(array1+array2), the object array1+array2 has a complicated expression type, all what you want to know
  * is that it inherits ArrayBase. So we implement a partial specialization of sin_impl for ArrayBase<Derived>.
  * So we must make sure to use sin_impl<ArrayBase<Derived> > and not sin_impl<Derived>, otherwise our partial specialization
  * won't be used. How does sin know that? That's exactly what global_math_functions_filtering_base tells it.
  *
  * How it's implemented:
  * SFINAE in the style of enable_if. Highly susceptible of breaking compilers. With GCC, it sure does work, but if you replace
  * the typename dummy by an integer template parameter, it doesn't work anymore!
  */

template<typename T, typename dummy = void>
struct global_math_functions_filtering_base
{
  typedef T type;
};

template<typename T> struct always_void { typedef void type; };

template<typename T>
struct global_math_functions_filtering_base
  <T,
   typename always_void<typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl>::type
  >
{
  typedef typename T::Eigen_BaseClassForSpecializationOfGlobalMathFuncImpl type;
};

#define EIGEN_MATHFUNC_IMPL(func, scalar) Eigen::internal::func##_impl<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>
#define EIGEN_MATHFUNC_RETVAL(func, scalar) typename Eigen::internal::func##_retval<typename Eigen::internal::global_math_functions_filtering_base<scalar>::type>::type

/****************************************************************************
* Implementation of real                                                 *
****************************************************************************/

template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct real_default_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    return x;
  }
};

template<typename Scalar>
struct real_default_impl<Scalar,true>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    using std::real;
    return real(x);
  }
};

template<typename Scalar> struct real_impl : real_default_impl<Scalar> {};

template<typename Scalar>
struct real_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};


/****************************************************************************
* Implementation of imag                                                 *
****************************************************************************/

template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct imag_default_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar&)
  {
    return RealScalar(0);
  }
};

template<typename Scalar>
struct imag_default_impl<Scalar,true>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    using std::imag;
    return imag(x);
  }
};

template<typename Scalar> struct imag_impl : imag_default_impl<Scalar> {};

template<typename Scalar>
struct imag_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of real_ref                                             *
****************************************************************************/

template<typename Scalar>
struct real_ref_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar& run(Scalar& x)
  {
    return reinterpret_cast<RealScalar*>(&x)[0];
  }
  static inline const RealScalar& run(const Scalar& x)
  {
    return reinterpret_cast<const RealScalar*>(&x)[0];
  }
};

template<typename Scalar>
struct real_ref_retval
{
  typedef typename NumTraits<Scalar>::Real & type;
};

/****************************************************************************
* Implementation of imag_ref                                             *
****************************************************************************/

template<typename Scalar, bool IsComplex>
struct imag_ref_default_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar& run(Scalar& x)
  {
    return reinterpret_cast<RealScalar*>(&x)[1];
  }
  static inline const RealScalar& run(const Scalar& x)
  {
    return reinterpret_cast<RealScalar*>(&x)[1];
  }
};

template<typename Scalar>
struct imag_ref_default_impl<Scalar, false>
{
  static inline Scalar run(Scalar&)
  {
    return Scalar(0);
  }
  static inline const Scalar run(const Scalar&)
  {
    return Scalar(0);
  }
};

template<typename Scalar>
struct imag_ref_impl : imag_ref_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};

template<typename Scalar>
struct imag_ref_retval
{
  typedef typename NumTraits<Scalar>::Real & type;
};

/****************************************************************************
* Implementation of conj                                                 *
****************************************************************************/

template<typename Scalar, bool IsComplex = NumTraits<Scalar>::IsComplex>
struct conj_impl
{
  static inline Scalar run(const Scalar& x)
  {
    return x;
  }
};

template<typename Scalar>
struct conj_impl<Scalar,true>
{
  static inline Scalar run(const Scalar& x)
  {
    using std::conj;
    return conj(x);
  }
};

template<typename Scalar>
struct conj_retval
{
  typedef Scalar type;
};

/****************************************************************************
* Implementation of abs2                                                 *
****************************************************************************/

template<typename Scalar,bool IsComplex>
struct abs2_impl_default
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    return x*x;
  }
};

template<typename Scalar>
struct abs2_impl_default<Scalar, true> // IsComplex
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    return real(x)*real(x) + imag(x)*imag(x);
  }
};

template<typename Scalar>
struct abs2_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    return abs2_impl_default<Scalar,NumTraits<Scalar>::IsComplex>::run(x);
  }
};

template<typename Scalar>
struct abs2_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of norm1                                                *
****************************************************************************/

template<typename Scalar, bool IsComplex>
struct norm1_default_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x)
  {
    using std::abs;
    return abs(real(x)) + abs(imag(x));
  }
};

template<typename Scalar>
struct norm1_default_impl<Scalar, false>
{
  static inline Scalar run(const Scalar& x)
  {
    using std::abs;
    return abs(x);
  }
};

template<typename Scalar>
struct norm1_impl : norm1_default_impl<Scalar, NumTraits<Scalar>::IsComplex> {};

template<typename Scalar>
struct norm1_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of hypot                                                *
****************************************************************************/

template<typename Scalar>
struct hypot_impl
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline RealScalar run(const Scalar& x, const Scalar& y)
  {
    using std::max;
    using std::min;
    using std::abs;
    using std::sqrt;
    RealScalar _x = abs(x);
    RealScalar _y = abs(y);
    RealScalar p = (max)(_x, _y);
    if(p==RealScalar(0)) return RealScalar(0);
    RealScalar q = (min)(_x, _y);
    RealScalar qp = q/p;
    return p * sqrt(RealScalar(1) + qp*qp);
  }
};

template<typename Scalar>
struct hypot_retval
{
  typedef typename NumTraits<Scalar>::Real type;
};

/****************************************************************************
* Implementation of cast                                                 *
****************************************************************************/

template<typename OldType, typename NewType>
struct cast_impl
{
  static inline NewType run(const OldType& x)
  {
    return static_cast<NewType>(x);
  }
};

// here, for once, we're plainly returning NewType: we don't want cast to do weird things.

template<typename OldType, typename NewType>
inline NewType cast(const OldType& x)
{
  return cast_impl<OldType, NewType>::run(x);
}

/****************************************************************************
* Implementation of atanh2                                                *
****************************************************************************/

template<typename Scalar, bool IsInteger>
struct atanh2_default_impl
{
  typedef Scalar retval;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    using std::abs;
    using std::log;
    using std::sqrt;
    Scalar z = x / y;
    if (y == Scalar(0) || abs(z) > sqrt(NumTraits<RealScalar>::epsilon()))
      return RealScalar(0.5) * log((y + x) / (y - x));
    else
      return z + z*z*z / RealScalar(3);
  }
};

template<typename Scalar>
struct atanh2_default_impl<Scalar, true>
{
  static inline Scalar run(const Scalar&, const Scalar&)
  {
    EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar)
    return Scalar(0);
  }
};

template<typename Scalar>
struct atanh2_impl : atanh2_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar>
struct atanh2_retval
{
  typedef Scalar type;
};

/****************************************************************************
* Implementation of pow                                                  *
****************************************************************************/

template<typename Scalar, bool IsInteger>
struct pow_default_impl
{
  typedef Scalar retval;
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    using std::pow;
    return pow(x, y);
  }
};

template<typename Scalar>
struct pow_default_impl<Scalar, true>
{
  static inline Scalar run(Scalar x, Scalar y)
  {
    Scalar res(1);
    eigen_assert(!NumTraits<Scalar>::IsSigned || y >= 0);
    if(y & 1) res *= x;
    y >>= 1;
    while(y)
    {
      x *= x;
      if(y&1) res *= x;
      y >>= 1;
    }
    return res;
  }
};

template<typename Scalar>
struct pow_impl : pow_default_impl<Scalar, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar>
struct pow_retval
{
  typedef Scalar type;
};

/****************************************************************************
* Implementation of random                                               *
****************************************************************************/

template<typename Scalar,
         bool IsComplex,
         bool IsInteger>
struct random_default_impl {};

template<typename Scalar>
struct random_impl : random_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar>
struct random_retval
{
  typedef Scalar type;
};

template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y);
template<typename Scalar> inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random();

template<typename Scalar>
struct random_default_impl<Scalar, false, false>
{
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    return x + (y-x) * Scalar(std::rand()) / Scalar(RAND_MAX);
  }
  static inline Scalar run()
  {
    return run(Scalar(NumTraits<Scalar>::IsSigned ? -1 : 0), Scalar(1));
  }
};

enum {
  floor_log2_terminate,
  floor_log2_move_up,
  floor_log2_move_down,
  floor_log2_bogus
};

template<unsigned int n, int lower, int upper> struct floor_log2_selector
{
  enum { middle = (lower + upper) / 2,
         value = (upper <= lower + 1) ? int(floor_log2_terminate)
               : (n < (1 << middle)) ? int(floor_log2_move_down)
               : (n==0) ? int(floor_log2_bogus)
               : int(floor_log2_move_up)
  };
};

template<unsigned int n,
         int lower = 0,
         int upper = sizeof(unsigned int) * CHAR_BIT - 1,
         int selector = floor_log2_selector<n, lower, upper>::value>
struct floor_log2 {};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_down>
{
  enum { value = floor_log2<n, lower, floor_log2_selector<n, lower, upper>::middle>::value };
};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_move_up>
{
  enum { value = floor_log2<n, floor_log2_selector<n, lower, upper>::middle, upper>::value };
};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_terminate>
{
  enum { value = (n >= ((unsigned int)(1) << (lower+1))) ? lower+1 : lower };
};

template<unsigned int n, int lower, int upper>
struct floor_log2<n, lower, upper, floor_log2_bogus>
{
  // no value, error at compile time
};

template<typename Scalar>
struct random_default_impl<Scalar, false, true>
{
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    typedef typename conditional<NumTraits<Scalar>::IsSigned,std::ptrdiff_t,std::size_t>::type ScalarX;
    if(y<x)
      return x;
    // the following difference might overflow on a 32 bits system,
    // but since y>=x the result converted to an unsigned long is still correct.
    std::size_t range = ScalarX(y)-ScalarX(x);
    std::size_t offset = 0;
    // rejection sampling
    std::size_t divisor = 1;
    std::size_t multiplier = 1;
    if(range<RAND_MAX) divisor = (std::size_t(RAND_MAX)+1)/(range+1);
    else               multiplier = 1 + range/(std::size_t(RAND_MAX)+1);
    do {
      offset = (std::size_t(std::rand()) * multiplier) / divisor;
    } while (offset > range);
    return Scalar(ScalarX(x) + offset);
  }

  static inline Scalar run()
  {
#ifdef EIGEN_MAKING_DOCS
    return run(Scalar(NumTraits<Scalar>::IsSigned ? -10 : 0), Scalar(10));
#else
    enum { rand_bits = floor_log2<(unsigned int)(RAND_MAX)+1>::value,
           scalar_bits = sizeof(Scalar) * CHAR_BIT,
           shift = EIGEN_PLAIN_ENUM_MAX(0, int(rand_bits) - int(scalar_bits)),
           offset = NumTraits<Scalar>::IsSigned ? (1 << (EIGEN_PLAIN_ENUM_MIN(rand_bits,scalar_bits)-1)) : 0
    };
    return Scalar((std::rand() >> shift) - offset);
#endif
  }
};

template<typename Scalar>
struct random_default_impl<Scalar, true, false>
{
  static inline Scalar run(const Scalar& x, const Scalar& y)
  {
    return Scalar(random(real(x), real(y)),
                  random(imag(x), imag(y)));
  }
  static inline Scalar run()
  {
    typedef typename NumTraits<Scalar>::Real RealScalar;
    return Scalar(random<RealScalar>(), random<RealScalar>());
  }
};

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(random, Scalar)::run(x, y);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(random, Scalar) random()
{
  return EIGEN_MATHFUNC_IMPL(random, Scalar)::run();
}

} // end namespace internal

/****************************************************************************
* Generic math function                                                    *
****************************************************************************/

namespace numext {

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real, Scalar) real(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(real, Scalar)::run(x);
}  

template<typename Scalar>
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) >::type real_ref(const Scalar& x)
{
  return internal::real_ref_impl<Scalar>::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(real_ref, Scalar) real_ref(Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(real_ref, Scalar)::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag, Scalar) imag(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(imag, Scalar)::run(x);
}

template<typename Scalar>
inline typename internal::add_const_on_value_type< EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) >::type imag_ref(const Scalar& x)
{
  return internal::imag_ref_impl<Scalar>::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(imag_ref, Scalar) imag_ref(Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(imag_ref, Scalar)::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(conj, Scalar) conj(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(conj, Scalar)::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(abs2, Scalar) abs2(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(abs2, Scalar)::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(norm1, Scalar) norm1(const Scalar& x)
{
  return EIGEN_MATHFUNC_IMPL(norm1, Scalar)::run(x);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(hypot, Scalar) hypot(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(hypot, Scalar)::run(x, y);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(atanh2, Scalar) atanh2(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(atanh2, Scalar)::run(x, y);
}

template<typename Scalar>
inline EIGEN_MATHFUNC_RETVAL(pow, Scalar) pow(const Scalar& x, const Scalar& y)
{
  return EIGEN_MATHFUNC_IMPL(pow, Scalar)::run(x, y);
}

// std::isfinite is non standard, so let's define our own version,
// even though it is not very efficient.
template<typename T> bool (isfinite)(const T& x)
{
  return x<NumTraits<T>::highest() && x>NumTraits<T>::lowest();
}

} // end namespace numext

namespace internal {

/****************************************************************************
* Implementation of fuzzy comparisons                                       *
****************************************************************************/

template<typename Scalar,
         bool IsComplex,
         bool IsInteger>
struct scalar_fuzzy_default_impl {};

template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, false>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
  {
    using std::abs;
    return abs(x) <= abs(y) * prec;
  }
  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
  {
    using std::min;
    using std::abs;
    return abs(x - y) <= (min)(abs(x), abs(y)) * prec;
  }
  static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar& prec)
  {
    return x <= y || isApprox(x, y, prec);
  }
};

template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, false, true>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const Scalar& x, const Scalar&, const RealScalar&)
  {
    return x == Scalar(0);
  }
  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar&)
  {
    return x == y;
  }
  static inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y, const RealScalar&)
  {
    return x <= y;
  }
};

template<typename Scalar>
struct scalar_fuzzy_default_impl<Scalar, true, false>
{
  typedef typename NumTraits<Scalar>::Real RealScalar;
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y, const RealScalar& prec)
  {
    return numext::abs2(x) <= numext::abs2(y) * prec * prec;
  }
  static inline bool isApprox(const Scalar& x, const Scalar& y, const RealScalar& prec)
  {
    using std::min;
    return numext::abs2(x - y) <= (min)(numext::abs2(x), numext::abs2(y)) * prec * prec;
  }
};

template<typename Scalar>
struct scalar_fuzzy_impl : scalar_fuzzy_default_impl<Scalar, NumTraits<Scalar>::IsComplex, NumTraits<Scalar>::IsInteger> {};

template<typename Scalar, typename OtherScalar>
inline bool isMuchSmallerThan(const Scalar& x, const OtherScalar& y,
                              const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
  return scalar_fuzzy_impl<Scalar>::template isMuchSmallerThan<OtherScalar>(x, y, precision);
}

template<typename Scalar>
inline bool isApprox(const Scalar& x, const Scalar& y,
                     const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
  return scalar_fuzzy_impl<Scalar>::isApprox(x, y, precision);
}

template<typename Scalar>
inline bool isApproxOrLessThan(const Scalar& x, const Scalar& y,
                               const typename NumTraits<Scalar>::Real &precision = NumTraits<Scalar>::dummy_precision())
{
  return scalar_fuzzy_impl<Scalar>::isApproxOrLessThan(x, y, precision);
}

/******************************************
***  The special case of the  bool type ***
******************************************/

template<> struct random_impl<bool>
{
  static inline bool run()
  {
    return random<int>(0,1)==0 ? false : true;
  }
};

template<> struct scalar_fuzzy_impl<bool>
{
  typedef bool RealScalar;
  
  template<typename OtherScalar>
  static inline bool isMuchSmallerThan(const bool& x, const bool&, const bool&)
  {
    return !x;
  }
  
  static inline bool isApprox(bool x, bool y, bool)
  {
    return x == y;
  }

  static inline bool isApproxOrLessThan(const bool& x, const bool& y, const bool&)
  {
    return (!x) || y;
  }
  
};

  
} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_MATHFUNCTIONS_H