PacketMath.h 15.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2010 Konstantinos Margaritis <markos@codex.gr>
// Heavily based on Gael's SSE version.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_PACKET_MATH_NEON_H
#define EIGEN_PACKET_MATH_NEON_H

namespace Eigen {

namespace internal {

#ifndef EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
#endif

// FIXME NEON has 16 quad registers, but since the current register allocator
// is so bad, it is much better to reduce it to 8
#ifndef EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS
#define EIGEN_ARCH_DEFAULT_NUMBER_OF_REGISTERS 8
#endif

typedef float32x4_t Packet4f;
typedef int32x4_t   Packet4i;
typedef uint32x4_t  Packet4ui;

#define _EIGEN_DECLARE_CONST_Packet4f(NAME,X) \
  const Packet4f p4f_##NAME = pset1<Packet4f>(X)

#define _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(NAME,X) \
  const Packet4f p4f_##NAME = vreinterpretq_f32_u32(pset1<int>(X))

#define _EIGEN_DECLARE_CONST_Packet4i(NAME,X) \
  const Packet4i p4i_##NAME = pset1<Packet4i>(X)

#if defined(__llvm__) && !defined(__clang__)
  //Special treatment for Apple's llvm-gcc, its NEON packet types are unions
  #define EIGEN_INIT_NEON_PACKET2(X, Y)       {{X, Y}}
  #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {{X, Y, Z, W}}
#else
  //Default initializer for packets
  #define EIGEN_INIT_NEON_PACKET2(X, Y)       {X, Y}
  #define EIGEN_INIT_NEON_PACKET4(X, Y, Z, W) {X, Y, Z, W}
#endif

// arm64 does have the pld instruction. If available, let's trust the __builtin_prefetch built-in function
// which available on LLVM and GCC (at least)
#if EIGEN_HAS_BUILTIN(__builtin_prefetch) || defined(__GNUC__)
  #define EIGEN_ARM_PREFETCH(ADDR) __builtin_prefetch(ADDR);
#elif defined __pld
  #define EIGEN_ARM_PREFETCH(ADDR) __pld(ADDR)
#elif !defined(__aarch64__)
  #define EIGEN_ARM_PREFETCH(ADDR) __asm__ __volatile__ ( "   pld [%[addr]]\n" :: [addr] "r" (ADDR) : "cc" );
#else
  // by default no explicit prefetching
  #define EIGEN_ARM_PREFETCH(ADDR)
#endif

template<> struct packet_traits<float>  : default_packet_traits
{
  typedef Packet4f type;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size = 4,
   
    HasDiv  = 1,
    // FIXME check the Has*
    HasSin  = 0,
    HasCos  = 0,
    HasLog  = 0,
    HasExp  = 0,
    HasSqrt = 0
  };
};
template<> struct packet_traits<int>    : default_packet_traits
{
  typedef Packet4i type;
  enum {
    Vectorizable = 1,
    AlignedOnScalar = 1,
    size=4
    // FIXME check the Has*
  };
};

#if EIGEN_GNUC_AT_MOST(4,4) && !defined(__llvm__)
// workaround gcc 4.2, 4.3 and 4.4 compilatin issue
EIGEN_STRONG_INLINE float32x4_t vld1q_f32(const float* x) { return ::vld1q_f32((const float32_t*)x); }
EIGEN_STRONG_INLINE float32x2_t vld1_f32 (const float* x) { return ::vld1_f32 ((const float32_t*)x); }
EIGEN_STRONG_INLINE void        vst1q_f32(float* to, float32x4_t from) { ::vst1q_f32((float32_t*)to,from); }
EIGEN_STRONG_INLINE void        vst1_f32 (float* to, float32x2_t from) { ::vst1_f32 ((float32_t*)to,from); }
#endif

template<> struct unpacket_traits<Packet4f> { typedef float  type; enum {size=4}; };
template<> struct unpacket_traits<Packet4i> { typedef int    type; enum {size=4}; };

template<> EIGEN_STRONG_INLINE Packet4f pset1<Packet4f>(const float&  from) { return vdupq_n_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pset1<Packet4i>(const int&    from)   { return vdupq_n_s32(from); }

template<> EIGEN_STRONG_INLINE Packet4f plset<float>(const float& a)
{
  Packet4f countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
  return vaddq_f32(pset1<Packet4f>(a), countdown);
}
template<> EIGEN_STRONG_INLINE Packet4i plset<int>(const int& a)
{
  Packet4i countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
  return vaddq_s32(pset1<Packet4i>(a), countdown);
}

template<> EIGEN_STRONG_INLINE Packet4f padd<Packet4f>(const Packet4f& a, const Packet4f& b) { return vaddq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i padd<Packet4i>(const Packet4i& a, const Packet4i& b) { return vaddq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f psub<Packet4f>(const Packet4f& a, const Packet4f& b) { return vsubq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i psub<Packet4i>(const Packet4i& a, const Packet4i& b) { return vsubq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pnegate(const Packet4f& a) { return vnegq_f32(a); }
template<> EIGEN_STRONG_INLINE Packet4i pnegate(const Packet4i& a) { return vnegq_s32(a); }

template<> EIGEN_STRONG_INLINE Packet4f pconj(const Packet4f& a) { return a; }
template<> EIGEN_STRONG_INLINE Packet4i pconj(const Packet4i& a) { return a; }

template<> EIGEN_STRONG_INLINE Packet4f pmul<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmulq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmul<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmulq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pdiv<Packet4f>(const Packet4f& a, const Packet4f& b)
{
  Packet4f inv, restep, div;

  // NEON does not offer a divide instruction, we have to do a reciprocal approximation
  // However NEON in contrast to other SIMD engines (AltiVec/SSE), offers
  // a reciprocal estimate AND a reciprocal step -which saves a few instructions
  // vrecpeq_f32() returns an estimate to 1/b, which we will finetune with
  // Newton-Raphson and vrecpsq_f32()
  inv = vrecpeq_f32(b);

  // This returns a differential, by which we will have to multiply inv to get a better
  // approximation of 1/b.
  restep = vrecpsq_f32(b, inv);
  inv = vmulq_f32(restep, inv);

  // Finally, multiply a by 1/b and get the wanted result of the division.
  div = vmulq_f32(a, inv);

  return div;
}
template<> EIGEN_STRONG_INLINE Packet4i pdiv<Packet4i>(const Packet4i& /*a*/, const Packet4i& /*b*/)
{ eigen_assert(false && "packet integer division are not supported by NEON");
  return pset1<Packet4i>(0);
}

// for some weird raisons, it has to be overloaded for packet of integers
template<> EIGEN_STRONG_INLINE Packet4f pmadd(const Packet4f& a, const Packet4f& b, const Packet4f& c) { return vmlaq_f32(c,a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmadd(const Packet4i& a, const Packet4i& b, const Packet4i& c) { return vmlaq_s32(c,a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pmin<Packet4f>(const Packet4f& a, const Packet4f& b) { return vminq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmin<Packet4i>(const Packet4i& a, const Packet4i& b) { return vminq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pmax<Packet4f>(const Packet4f& a, const Packet4f& b) { return vmaxq_f32(a,b); }
template<> EIGEN_STRONG_INLINE Packet4i pmax<Packet4i>(const Packet4i& a, const Packet4i& b) { return vmaxq_s32(a,b); }

// Logical Operations are not supported for float, so we have to reinterpret casts using NEON intrinsics
template<> EIGEN_STRONG_INLINE Packet4f pand<Packet4f>(const Packet4f& a, const Packet4f& b)
{
  return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pand<Packet4i>(const Packet4i& a, const Packet4i& b) { return vandq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f por<Packet4f>(const Packet4f& a, const Packet4f& b)
{
  return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i por<Packet4i>(const Packet4i& a, const Packet4i& b) { return vorrq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pxor<Packet4f>(const Packet4f& a, const Packet4f& b)
{
  return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pxor<Packet4i>(const Packet4i& a, const Packet4i& b) { return veorq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pandnot<Packet4f>(const Packet4f& a, const Packet4f& b)
{
  return vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(a),vreinterpretq_u32_f32(b)));
}
template<> EIGEN_STRONG_INLINE Packet4i pandnot<Packet4i>(const Packet4i& a, const Packet4i& b) { return vbicq_s32(a,b); }

template<> EIGEN_STRONG_INLINE Packet4f pload<Packet4f>(const float* from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i pload<Packet4i>(const int*   from) { EIGEN_DEBUG_ALIGNED_LOAD return vld1q_s32(from); }

template<> EIGEN_STRONG_INLINE Packet4f ploadu<Packet4f>(const float* from) { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_f32(from); }
template<> EIGEN_STRONG_INLINE Packet4i ploadu<Packet4i>(const int* from)   { EIGEN_DEBUG_UNALIGNED_LOAD return vld1q_s32(from); }

template<> EIGEN_STRONG_INLINE Packet4f ploaddup<Packet4f>(const float*   from)
{
  float32x2_t lo, hi;
  lo = vld1_dup_f32(from);
  hi = vld1_dup_f32(from+1);
  return vcombine_f32(lo, hi);
}
template<> EIGEN_STRONG_INLINE Packet4i ploaddup<Packet4i>(const int*     from)
{
  int32x2_t lo, hi;
  lo = vld1_dup_s32(from);
  hi = vld1_dup_s32(from+1);
  return vcombine_s32(lo, hi);
}

template<> EIGEN_STRONG_INLINE void pstore<float>(float*   to, const Packet4f& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstore<int>(int*       to, const Packet4i& from) { EIGEN_DEBUG_ALIGNED_STORE vst1q_s32(to, from); }

template<> EIGEN_STRONG_INLINE void pstoreu<float>(float*  to, const Packet4f& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_f32(to, from); }
template<> EIGEN_STRONG_INLINE void pstoreu<int>(int*      to, const Packet4i& from) { EIGEN_DEBUG_UNALIGNED_STORE vst1q_s32(to, from); }

template<> EIGEN_STRONG_INLINE void prefetch<float>(const float* addr) { EIGEN_ARM_PREFETCH(addr); }
template<> EIGEN_STRONG_INLINE void prefetch<int>(const int*     addr) { EIGEN_ARM_PREFETCH(addr); }

// FIXME only store the 2 first elements ?
template<> EIGEN_STRONG_INLINE float  pfirst<Packet4f>(const Packet4f& a) { float EIGEN_ALIGN16 x[4]; vst1q_f32(x, a); return x[0]; }
template<> EIGEN_STRONG_INLINE int    pfirst<Packet4i>(const Packet4i& a) { int   EIGEN_ALIGN16 x[4]; vst1q_s32(x, a); return x[0]; }

template<> EIGEN_STRONG_INLINE Packet4f preverse(const Packet4f& a) {
  float32x2_t a_lo, a_hi;
  Packet4f a_r64;

  a_r64 = vrev64q_f32(a);
  a_lo = vget_low_f32(a_r64);
  a_hi = vget_high_f32(a_r64);
  return vcombine_f32(a_hi, a_lo);
}
template<> EIGEN_STRONG_INLINE Packet4i preverse(const Packet4i& a) {
  int32x2_t a_lo, a_hi;
  Packet4i a_r64;

  a_r64 = vrev64q_s32(a);
  a_lo = vget_low_s32(a_r64);
  a_hi = vget_high_s32(a_r64);
  return vcombine_s32(a_hi, a_lo);
}
template<> EIGEN_STRONG_INLINE Packet4f pabs(const Packet4f& a) { return vabsq_f32(a); }
template<> EIGEN_STRONG_INLINE Packet4i pabs(const Packet4i& a) { return vabsq_s32(a); }

template<> EIGEN_STRONG_INLINE float predux<Packet4f>(const Packet4f& a)
{
  float32x2_t a_lo, a_hi, sum;

  a_lo = vget_low_f32(a);
  a_hi = vget_high_f32(a);
  sum = vpadd_f32(a_lo, a_hi);
  sum = vpadd_f32(sum, sum);
  return vget_lane_f32(sum, 0);
}

template<> EIGEN_STRONG_INLINE Packet4f preduxp<Packet4f>(const Packet4f* vecs)
{
  float32x4x2_t vtrn1, vtrn2, res1, res2;
  Packet4f sum1, sum2, sum;

  // NEON zip performs interleaving of the supplied vectors.
  // We perform two interleaves in a row to acquire the transposed vector
  vtrn1 = vzipq_f32(vecs[0], vecs[2]);
  vtrn2 = vzipq_f32(vecs[1], vecs[3]);
  res1 = vzipq_f32(vtrn1.val[0], vtrn2.val[0]);
  res2 = vzipq_f32(vtrn1.val[1], vtrn2.val[1]);

  // Do the addition of the resulting vectors
  sum1 = vaddq_f32(res1.val[0], res1.val[1]);
  sum2 = vaddq_f32(res2.val[0], res2.val[1]);
  sum = vaddq_f32(sum1, sum2);

  return sum;
}

template<> EIGEN_STRONG_INLINE int predux<Packet4i>(const Packet4i& a)
{
  int32x2_t a_lo, a_hi, sum;

  a_lo = vget_low_s32(a);
  a_hi = vget_high_s32(a);
  sum = vpadd_s32(a_lo, a_hi);
  sum = vpadd_s32(sum, sum);
  return vget_lane_s32(sum, 0);
}

template<> EIGEN_STRONG_INLINE Packet4i preduxp<Packet4i>(const Packet4i* vecs)
{
  int32x4x2_t vtrn1, vtrn2, res1, res2;
  Packet4i sum1, sum2, sum;

  // NEON zip performs interleaving of the supplied vectors.
  // We perform two interleaves in a row to acquire the transposed vector
  vtrn1 = vzipq_s32(vecs[0], vecs[2]);
  vtrn2 = vzipq_s32(vecs[1], vecs[3]);
  res1 = vzipq_s32(vtrn1.val[0], vtrn2.val[0]);
  res2 = vzipq_s32(vtrn1.val[1], vtrn2.val[1]);

  // Do the addition of the resulting vectors
  sum1 = vaddq_s32(res1.val[0], res1.val[1]);
  sum2 = vaddq_s32(res2.val[0], res2.val[1]);
  sum = vaddq_s32(sum1, sum2);

  return sum;
}

// Other reduction functions:
// mul
template<> EIGEN_STRONG_INLINE float predux_mul<Packet4f>(const Packet4f& a)
{
  float32x2_t a_lo, a_hi, prod;

  // Get a_lo = |a1|a2| and a_hi = |a3|a4|
  a_lo = vget_low_f32(a);
  a_hi = vget_high_f32(a);
  // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
  prod = vmul_f32(a_lo, a_hi);
  // Multiply prod with its swapped value |a2*a4|a1*a3|
  prod = vmul_f32(prod, vrev64_f32(prod));

  return vget_lane_f32(prod, 0);
}
template<> EIGEN_STRONG_INLINE int predux_mul<Packet4i>(const Packet4i& a)
{
  int32x2_t a_lo, a_hi, prod;

  // Get a_lo = |a1|a2| and a_hi = |a3|a4|
  a_lo = vget_low_s32(a);
  a_hi = vget_high_s32(a);
  // Get the product of a_lo * a_hi -> |a1*a3|a2*a4|
  prod = vmul_s32(a_lo, a_hi);
  // Multiply prod with its swapped value |a2*a4|a1*a3|
  prod = vmul_s32(prod, vrev64_s32(prod));

  return vget_lane_s32(prod, 0);
}

// min
template<> EIGEN_STRONG_INLINE float predux_min<Packet4f>(const Packet4f& a)
{
  float32x2_t a_lo, a_hi, min;

  a_lo = vget_low_f32(a);
  a_hi = vget_high_f32(a);
  min = vpmin_f32(a_lo, a_hi);
  min = vpmin_f32(min, min);

  return vget_lane_f32(min, 0);
}

template<> EIGEN_STRONG_INLINE int predux_min<Packet4i>(const Packet4i& a)
{
  int32x2_t a_lo, a_hi, min;

  a_lo = vget_low_s32(a);
  a_hi = vget_high_s32(a);
  min = vpmin_s32(a_lo, a_hi);
  min = vpmin_s32(min, min);
  
  return vget_lane_s32(min, 0);
}

// max
template<> EIGEN_STRONG_INLINE float predux_max<Packet4f>(const Packet4f& a)
{
  float32x2_t a_lo, a_hi, max;

  a_lo = vget_low_f32(a);
  a_hi = vget_high_f32(a);
  max = vpmax_f32(a_lo, a_hi);
  max = vpmax_f32(max, max);

  return vget_lane_f32(max, 0);
}

template<> EIGEN_STRONG_INLINE int predux_max<Packet4i>(const Packet4i& a)
{
  int32x2_t a_lo, a_hi, max;

  a_lo = vget_low_s32(a);
  a_hi = vget_high_s32(a);
  max = vpmax_s32(a_lo, a_hi);
  max = vpmax_s32(max, max);

  return vget_lane_s32(max, 0);
}

// this PALIGN_NEON business is to work around a bug in LLVM Clang 3.0 causing incorrect compilation errors,
// see bug 347 and this LLVM bug: http://llvm.org/bugs/show_bug.cgi?id=11074
#define PALIGN_NEON(Offset,Type,Command) \
template<>\
struct palign_impl<Offset,Type>\
{\
    EIGEN_STRONG_INLINE static void run(Type& first, const Type& second)\
    {\
        if (Offset!=0)\
            first = Command(first, second, Offset);\
    }\
};\

PALIGN_NEON(0,Packet4f,vextq_f32)
PALIGN_NEON(1,Packet4f,vextq_f32)
PALIGN_NEON(2,Packet4f,vextq_f32)
PALIGN_NEON(3,Packet4f,vextq_f32)
PALIGN_NEON(0,Packet4i,vextq_s32)
PALIGN_NEON(1,Packet4i,vextq_s32)
PALIGN_NEON(2,Packet4i,vextq_s32)
PALIGN_NEON(3,Packet4i,vextq_s32)
    
#undef PALIGN_NEON

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_PACKET_MATH_NEON_H