MathFunctions.h 15.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2007 Julien Pommier
// Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

/* The sin, cos, exp, and log functions of this file come from
 * Julien Pommier's sse math library: http://gruntthepeon.free.fr/ssemath/
 */

#ifndef EIGEN_MATH_FUNCTIONS_SSE_H
#define EIGEN_MATH_FUNCTIONS_SSE_H

namespace Eigen {

namespace internal {

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f plog<Packet4f>(const Packet4f& _x)
{
  Packet4f x = _x;
  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
  _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);

  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(inv_mant_mask, ~0x7f800000);

  /* the smallest non denormalized float number */
  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(min_norm_pos,  0x00800000);
  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(minus_inf,     0xff800000);//-1.f/0.f);
  
  /* natural logarithm computed for 4 simultaneous float
    return NaN for x <= 0
  */
  _EIGEN_DECLARE_CONST_Packet4f(cephes_SQRTHF, 0.707106781186547524f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p0, 7.0376836292E-2f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p1, - 1.1514610310E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p2, 1.1676998740E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p3, - 1.2420140846E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p4, + 1.4249322787E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p5, - 1.6668057665E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p6, + 2.0000714765E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p7, - 2.4999993993E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_p8, + 3.3333331174E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q1, -2.12194440e-4f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_log_q2, 0.693359375f);


  Packet4i emm0;

  Packet4f invalid_mask = _mm_cmpnge_ps(x, _mm_setzero_ps()); // not greater equal is true if x is NaN
  Packet4f iszero_mask = _mm_cmpeq_ps(x, _mm_setzero_ps());

  x = pmax(x, p4f_min_norm_pos);  /* cut off denormalized stuff */
  emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);

  /* keep only the fractional part */
  x = _mm_and_ps(x, p4f_inv_mant_mask);
  x = _mm_or_ps(x, p4f_half);

  emm0 = _mm_sub_epi32(emm0, p4i_0x7f);
  Packet4f e = padd(_mm_cvtepi32_ps(emm0), p4f_1);

  /* part2:
     if( x < SQRTHF ) {
       e -= 1;
       x = x + x - 1.0;
     } else { x = x - 1.0; }
  */
  Packet4f mask = _mm_cmplt_ps(x, p4f_cephes_SQRTHF);
  Packet4f tmp = _mm_and_ps(x, mask);
  x = psub(x, p4f_1);
  e = psub(e, _mm_and_ps(p4f_1, mask));
  x = padd(x, tmp);

  Packet4f x2 = pmul(x,x);
  Packet4f x3 = pmul(x2,x);

  Packet4f y, y1, y2;
  y  = pmadd(p4f_cephes_log_p0, x, p4f_cephes_log_p1);
  y1 = pmadd(p4f_cephes_log_p3, x, p4f_cephes_log_p4);
  y2 = pmadd(p4f_cephes_log_p6, x, p4f_cephes_log_p7);
  y  = pmadd(y , x, p4f_cephes_log_p2);
  y1 = pmadd(y1, x, p4f_cephes_log_p5);
  y2 = pmadd(y2, x, p4f_cephes_log_p8);
  y = pmadd(y, x3, y1);
  y = pmadd(y, x3, y2);
  y = pmul(y, x3);

  y1 = pmul(e, p4f_cephes_log_q1);
  tmp = pmul(x2, p4f_half);
  y = padd(y, y1);
  x = psub(x, tmp);
  y2 = pmul(e, p4f_cephes_log_q2);
  x = padd(x, y);
  x = padd(x, y2);
  // negative arg will be NAN, 0 will be -INF
  return _mm_or_ps(_mm_andnot_ps(iszero_mask, _mm_or_ps(x, invalid_mask)),
                   _mm_and_ps(iszero_mask, p4f_minus_inf));
}

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f pexp<Packet4f>(const Packet4f& _x)
{
  Packet4f x = _x;
  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);
  _EIGEN_DECLARE_CONST_Packet4i(0x7f, 0x7f);


  _EIGEN_DECLARE_CONST_Packet4f(exp_hi,  88.3762626647950f);
  _EIGEN_DECLARE_CONST_Packet4f(exp_lo, -88.3762626647949f);

  _EIGEN_DECLARE_CONST_Packet4f(cephes_LOG2EF, 1.44269504088896341f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C1, 0.693359375f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_C2, -2.12194440e-4f);

  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p0, 1.9875691500E-4f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p1, 1.3981999507E-3f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p2, 8.3334519073E-3f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p3, 4.1665795894E-2f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p4, 1.6666665459E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_exp_p5, 5.0000001201E-1f);

  Packet4f tmp, fx;
  Packet4i emm0;

  // clamp x
  x = pmax(pmin(x, p4f_exp_hi), p4f_exp_lo);

  /* express exp(x) as exp(g + n*log(2)) */
  fx = pmadd(x, p4f_cephes_LOG2EF, p4f_half);

#ifdef EIGEN_VECTORIZE_SSE4_1
  fx = _mm_floor_ps(fx);
#else
  emm0 = _mm_cvttps_epi32(fx);
  tmp  = _mm_cvtepi32_ps(emm0);
  /* if greater, substract 1 */
  Packet4f mask = _mm_cmpgt_ps(tmp, fx);
  mask = _mm_and_ps(mask, p4f_1);
  fx = psub(tmp, mask);
#endif

  tmp = pmul(fx, p4f_cephes_exp_C1);
  Packet4f z = pmul(fx, p4f_cephes_exp_C2);
  x = psub(x, tmp);
  x = psub(x, z);

  z = pmul(x,x);

  Packet4f y = p4f_cephes_exp_p0;
  y = pmadd(y, x, p4f_cephes_exp_p1);
  y = pmadd(y, x, p4f_cephes_exp_p2);
  y = pmadd(y, x, p4f_cephes_exp_p3);
  y = pmadd(y, x, p4f_cephes_exp_p4);
  y = pmadd(y, x, p4f_cephes_exp_p5);
  y = pmadd(y, z, x);
  y = padd(y, p4f_1);

  // build 2^n
  emm0 = _mm_cvttps_epi32(fx);
  emm0 = _mm_add_epi32(emm0, p4i_0x7f);
  emm0 = _mm_slli_epi32(emm0, 23);
  return pmax(pmul(y, Packet4f(_mm_castsi128_ps(emm0))), _x);
}
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet2d pexp<Packet2d>(const Packet2d& _x)
{
  Packet2d x = _x;

  _EIGEN_DECLARE_CONST_Packet2d(1 , 1.0);
  _EIGEN_DECLARE_CONST_Packet2d(2 , 2.0);
  _EIGEN_DECLARE_CONST_Packet2d(half, 0.5);

  _EIGEN_DECLARE_CONST_Packet2d(exp_hi,  709.437);
  _EIGEN_DECLARE_CONST_Packet2d(exp_lo, -709.436139303);

  _EIGEN_DECLARE_CONST_Packet2d(cephes_LOG2EF, 1.4426950408889634073599);

  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p0, 1.26177193074810590878e-4);
  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p1, 3.02994407707441961300e-2);
  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_p2, 9.99999999999999999910e-1);

  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q0, 3.00198505138664455042e-6);
  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q1, 2.52448340349684104192e-3);
  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q2, 2.27265548208155028766e-1);
  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_q3, 2.00000000000000000009e0);

  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C1, 0.693145751953125);
  _EIGEN_DECLARE_CONST_Packet2d(cephes_exp_C2, 1.42860682030941723212e-6);
  static const __m128i p4i_1023_0 = _mm_setr_epi32(1023, 1023, 0, 0);

  Packet2d tmp, fx;
  Packet4i emm0;

  // clamp x
  x = pmax(pmin(x, p2d_exp_hi), p2d_exp_lo);
  /* express exp(x) as exp(g + n*log(2)) */
  fx = pmadd(p2d_cephes_LOG2EF, x, p2d_half);

#ifdef EIGEN_VECTORIZE_SSE4_1
  fx = _mm_floor_pd(fx);
#else
  emm0 = _mm_cvttpd_epi32(fx);
  tmp  = _mm_cvtepi32_pd(emm0);
  /* if greater, substract 1 */
  Packet2d mask = _mm_cmpgt_pd(tmp, fx);
  mask = _mm_and_pd(mask, p2d_1);
  fx = psub(tmp, mask);
#endif

  tmp = pmul(fx, p2d_cephes_exp_C1);
  Packet2d z = pmul(fx, p2d_cephes_exp_C2);
  x = psub(x, tmp);
  x = psub(x, z);

  Packet2d x2 = pmul(x,x);

  Packet2d px = p2d_cephes_exp_p0;
  px = pmadd(px, x2, p2d_cephes_exp_p1);
  px = pmadd(px, x2, p2d_cephes_exp_p2);
  px = pmul (px, x);

  Packet2d qx = p2d_cephes_exp_q0;
  qx = pmadd(qx, x2, p2d_cephes_exp_q1);
  qx = pmadd(qx, x2, p2d_cephes_exp_q2);
  qx = pmadd(qx, x2, p2d_cephes_exp_q3);

  x = pdiv(px,psub(qx,px));
  x = pmadd(p2d_2,x,p2d_1);

  // build 2^n
  emm0 = _mm_cvttpd_epi32(fx);
  emm0 = _mm_add_epi32(emm0, p4i_1023_0);
  emm0 = _mm_slli_epi32(emm0, 20);
  emm0 = _mm_shuffle_epi32(emm0, _MM_SHUFFLE(1,2,0,3));
  return pmax(pmul(x, Packet2d(_mm_castsi128_pd(emm0))), _x);
}

/* evaluation of 4 sines at onces, using SSE2 intrinsics.

   The code is the exact rewriting of the cephes sinf function.
   Precision is excellent as long as x < 8192 (I did not bother to
   take into account the special handling they have for greater values
   -- it does not return garbage for arguments over 8192, though, but
   the extra precision is missing).

   Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
   surprising but correct result.
*/

template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f psin<Packet4f>(const Packet4f& _x)
{
  Packet4f x = _x;
  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);

  _EIGEN_DECLARE_CONST_Packet4i(1, 1);
  _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
  _EIGEN_DECLARE_CONST_Packet4i(2, 2);
  _EIGEN_DECLARE_CONST_Packet4i(4, 4);

  _EIGEN_DECLARE_CONST_Packet4f_FROM_INT(sign_mask, 0x80000000);

  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
  _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
  _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
  _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
  _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
  _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI

  Packet4f xmm1, xmm2, xmm3, sign_bit, y;

  Packet4i emm0, emm2;
  sign_bit = x;
  /* take the absolute value */
  x = pabs(x);

  /* take the modulo */

  /* extract the sign bit (upper one) */
  sign_bit = _mm_and_ps(sign_bit, p4f_sign_mask);

  /* scale by 4/Pi */
  y = pmul(x, p4f_cephes_FOPI);

  /* store the integer part of y in mm0 */
  emm2 = _mm_cvttps_epi32(y);
  /* j=(j+1) & (~1) (see the cephes sources) */
  emm2 = _mm_add_epi32(emm2, p4i_1);
  emm2 = _mm_and_si128(emm2, p4i_not1);
  y = _mm_cvtepi32_ps(emm2);
  /* get the swap sign flag */
  emm0 = _mm_and_si128(emm2, p4i_4);
  emm0 = _mm_slli_epi32(emm0, 29);
  /* get the polynom selection mask
     there is one polynom for 0 <= x <= Pi/4
     and another one for Pi/4<x<=Pi/2

     Both branches will be computed.
  */
  emm2 = _mm_and_si128(emm2, p4i_2);
  emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());

  Packet4f swap_sign_bit = _mm_castsi128_ps(emm0);
  Packet4f poly_mask = _mm_castsi128_ps(emm2);
  sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);

  /* The magic pass: "Extended precision modular arithmetic"
     x = ((x - y * DP1) - y * DP2) - y * DP3; */
  xmm1 = pmul(y, p4f_minus_cephes_DP1);
  xmm2 = pmul(y, p4f_minus_cephes_DP2);
  xmm3 = pmul(y, p4f_minus_cephes_DP3);
  x = padd(x, xmm1);
  x = padd(x, xmm2);
  x = padd(x, xmm3);

  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
  y = p4f_coscof_p0;
  Packet4f z = _mm_mul_ps(x,x);

  y = pmadd(y, z, p4f_coscof_p1);
  y = pmadd(y, z, p4f_coscof_p2);
  y = pmul(y, z);
  y = pmul(y, z);
  Packet4f tmp = pmul(z, p4f_half);
  y = psub(y, tmp);
  y = padd(y, p4f_1);

  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */

  Packet4f y2 = p4f_sincof_p0;
  y2 = pmadd(y2, z, p4f_sincof_p1);
  y2 = pmadd(y2, z, p4f_sincof_p2);
  y2 = pmul(y2, z);
  y2 = pmul(y2, x);
  y2 = padd(y2, x);

  /* select the correct result from the two polynoms */
  y2 = _mm_and_ps(poly_mask, y2);
  y = _mm_andnot_ps(poly_mask, y);
  y = _mm_or_ps(y,y2);
  /* update the sign */
  return _mm_xor_ps(y, sign_bit);
}

/* almost the same as psin */
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f pcos<Packet4f>(const Packet4f& _x)
{
  Packet4f x = _x;
  _EIGEN_DECLARE_CONST_Packet4f(1 , 1.0f);
  _EIGEN_DECLARE_CONST_Packet4f(half, 0.5f);

  _EIGEN_DECLARE_CONST_Packet4i(1, 1);
  _EIGEN_DECLARE_CONST_Packet4i(not1, ~1);
  _EIGEN_DECLARE_CONST_Packet4i(2, 2);
  _EIGEN_DECLARE_CONST_Packet4i(4, 4);

  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP1,-0.78515625f);
  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP2, -2.4187564849853515625e-4f);
  _EIGEN_DECLARE_CONST_Packet4f(minus_cephes_DP3, -3.77489497744594108e-8f);
  _EIGEN_DECLARE_CONST_Packet4f(sincof_p0, -1.9515295891E-4f);
  _EIGEN_DECLARE_CONST_Packet4f(sincof_p1,  8.3321608736E-3f);
  _EIGEN_DECLARE_CONST_Packet4f(sincof_p2, -1.6666654611E-1f);
  _EIGEN_DECLARE_CONST_Packet4f(coscof_p0,  2.443315711809948E-005f);
  _EIGEN_DECLARE_CONST_Packet4f(coscof_p1, -1.388731625493765E-003f);
  _EIGEN_DECLARE_CONST_Packet4f(coscof_p2,  4.166664568298827E-002f);
  _EIGEN_DECLARE_CONST_Packet4f(cephes_FOPI, 1.27323954473516f); // 4 / M_PI

  Packet4f xmm1, xmm2, xmm3, y;
  Packet4i emm0, emm2;

  x = pabs(x);

  /* scale by 4/Pi */
  y = pmul(x, p4f_cephes_FOPI);

  /* get the integer part of y */
  emm2 = _mm_cvttps_epi32(y);
  /* j=(j+1) & (~1) (see the cephes sources) */
  emm2 = _mm_add_epi32(emm2, p4i_1);
  emm2 = _mm_and_si128(emm2, p4i_not1);
  y = _mm_cvtepi32_ps(emm2);

  emm2 = _mm_sub_epi32(emm2, p4i_2);

  /* get the swap sign flag */
  emm0 = _mm_andnot_si128(emm2, p4i_4);
  emm0 = _mm_slli_epi32(emm0, 29);
  /* get the polynom selection mask */
  emm2 = _mm_and_si128(emm2, p4i_2);
  emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());

  Packet4f sign_bit = _mm_castsi128_ps(emm0);
  Packet4f poly_mask = _mm_castsi128_ps(emm2);

  /* The magic pass: "Extended precision modular arithmetic"
     x = ((x - y * DP1) - y * DP2) - y * DP3; */
  xmm1 = pmul(y, p4f_minus_cephes_DP1);
  xmm2 = pmul(y, p4f_minus_cephes_DP2);
  xmm3 = pmul(y, p4f_minus_cephes_DP3);
  x = padd(x, xmm1);
  x = padd(x, xmm2);
  x = padd(x, xmm3);

  /* Evaluate the first polynom  (0 <= x <= Pi/4) */
  y = p4f_coscof_p0;
  Packet4f z = pmul(x,x);

  y = pmadd(y,z,p4f_coscof_p1);
  y = pmadd(y,z,p4f_coscof_p2);
  y = pmul(y, z);
  y = pmul(y, z);
  Packet4f tmp = _mm_mul_ps(z, p4f_half);
  y = psub(y, tmp);
  y = padd(y, p4f_1);

  /* Evaluate the second polynom  (Pi/4 <= x <= 0) */
  Packet4f y2 = p4f_sincof_p0;
  y2 = pmadd(y2, z, p4f_sincof_p1);
  y2 = pmadd(y2, z, p4f_sincof_p2);
  y2 = pmul(y2, z);
  y2 = pmadd(y2, x, x);

  /* select the correct result from the two polynoms */
  y2 = _mm_and_ps(poly_mask, y2);
  y  = _mm_andnot_ps(poly_mask, y);
  y  = _mm_or_ps(y,y2);

  /* update the sign */
  return _mm_xor_ps(y, sign_bit);
}

#if EIGEN_FAST_MATH

// This is based on Quake3's fast inverse square root.
// For detail see here: http://www.beyond3d.com/content/articles/8/
// It lacks 1 (or 2 bits in some rare cases) of precision, and does not handle negative, +inf, or denormalized numbers correctly.
template<> EIGEN_DEFINE_FUNCTION_ALLOWING_MULTIPLE_DEFINITIONS EIGEN_UNUSED
Packet4f psqrt<Packet4f>(const Packet4f& _x)
{
  Packet4f half = pmul(_x, pset1<Packet4f>(.5f));

  /* select only the inverse sqrt of non-zero inputs */
  Packet4f non_zero_mask = _mm_cmpge_ps(_x, pset1<Packet4f>((std::numeric_limits<float>::min)()));
  Packet4f x = _mm_and_ps(non_zero_mask, _mm_rsqrt_ps(_x));

  x = pmul(x, psub(pset1<Packet4f>(1.5f), pmul(half, pmul(x,x))));
  return pmul(_x,x);
}

#else

template<> EIGEN_STRONG_INLINE Packet4f psqrt<Packet4f>(const Packet4f& x) { return _mm_sqrt_ps(x); }

#endif

template<> EIGEN_STRONG_INLINE Packet2d psqrt<Packet2d>(const Packet2d& x) { return _mm_sqrt_pd(x); }

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_MATH_FUNCTIONS_SSE_H