spbenchsolver.h 17.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.


#include <iostream>
#include <fstream>
#include <Eigen/SparseCore>
#include <bench/BenchTimer.h>
#include <cstdlib>
#include <string>
#include <Eigen/Cholesky>
#include <Eigen/Jacobi>
#include <Eigen/Householder>
#include <Eigen/IterativeLinearSolvers>
#include <unsupported/Eigen/IterativeSolvers>
#include <Eigen/LU>
#include <unsupported/Eigen/SparseExtra>
#include <Eigen/SparseLU>

#include "spbenchstyle.h"

#ifdef EIGEN_METIS_SUPPORT
#include <Eigen/MetisSupport>
#endif

#ifdef EIGEN_CHOLMOD_SUPPORT
#include <Eigen/CholmodSupport>
#endif

#ifdef EIGEN_UMFPACK_SUPPORT
#include <Eigen/UmfPackSupport>
#endif

#ifdef EIGEN_PARDISO_SUPPORT
#include <Eigen/PardisoSupport>
#endif

#ifdef EIGEN_SUPERLU_SUPPORT
#include <Eigen/SuperLUSupport>
#endif

#ifdef EIGEN_PASTIX_SUPPORT
#include <Eigen/PaStiXSupport>
#endif

// CONSTANTS
#define EIGEN_UMFPACK  10
#define EIGEN_SUPERLU  20
#define EIGEN_PASTIX  30
#define EIGEN_PARDISO  40
#define EIGEN_SPARSELU_COLAMD 50
#define EIGEN_SPARSELU_METIS 51
#define EIGEN_BICGSTAB  60
#define EIGEN_BICGSTAB_ILUT  61
#define EIGEN_GMRES 70
#define EIGEN_GMRES_ILUT 71
#define EIGEN_SIMPLICIAL_LDLT  80
#define EIGEN_CHOLMOD_LDLT  90
#define EIGEN_PASTIX_LDLT  100
#define EIGEN_PARDISO_LDLT  110
#define EIGEN_SIMPLICIAL_LLT  120
#define EIGEN_CHOLMOD_SUPERNODAL_LLT  130
#define EIGEN_CHOLMOD_SIMPLICIAL_LLT  140
#define EIGEN_PASTIX_LLT  150
#define EIGEN_PARDISO_LLT  160
#define EIGEN_CG  170
#define EIGEN_CG_PRECOND  180

using namespace Eigen;
using namespace std; 


// Global variables for input parameters
int MaximumIters; // Maximum number of iterations
double RelErr; // Relative error of the computed solution
double best_time_val; // Current best time overall solvers 
int best_time_id; //  id of the best solver for the current system 

template<typename T> inline typename NumTraits<T>::Real test_precision() { return NumTraits<T>::dummy_precision(); }
template<> inline float test_precision<float>() { return 1e-3f; }                                                             
template<> inline double test_precision<double>() { return 1e-6; }                                                            
template<> inline float test_precision<std::complex<float> >() { return test_precision<float>(); }
template<> inline double test_precision<std::complex<double> >() { return test_precision<double>(); }

void printStatheader(std::ofstream& out)
{
  // Print XML header
  // NOTE It would have been much easier to write these XML documents using external libraries like tinyXML or Xerces-C++.
  
  out << "<?xml version='1.0' encoding='UTF-8'?> \n";
  out << "<?xml-stylesheet type='text/xsl' href='#stylesheet' ?> \n"; 
  out << "<!DOCTYPE BENCH  [\n<!ATTLIST xsl:stylesheet\n id\t ID  #REQUIRED>\n]>";
  out << "\n\n<!-- Generated by the Eigen library -->\n"; 
  
  out << "\n<BENCH> \n" ; //root XML element 
  // Print the xsl style section
  printBenchStyle(out); 
  // List all available solvers 
  out << " <AVAILSOLVER> \n";
#ifdef EIGEN_UMFPACK_SUPPORT
  out <<"  <SOLVER ID='" << EIGEN_UMFPACK << "'>\n"; 
  out << "   <TYPE> LU </TYPE> \n";
  out << "   <PACKAGE> UMFPACK </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
#endif
#ifdef EIGEN_SUPERLU_SUPPORT
  out <<"  <SOLVER ID='" << EIGEN_SUPERLU << "'>\n"; 
  out << "   <TYPE> LU </TYPE> \n";
  out << "   <PACKAGE> SUPERLU </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
#endif
#ifdef EIGEN_CHOLMOD_SUPPORT
  out <<"  <SOLVER ID='" << EIGEN_CHOLMOD_SIMPLICIAL_LLT << "'>\n"; 
  out << "   <TYPE> LLT SP</TYPE> \n";
  out << "   <PACKAGE> CHOLMOD </PACKAGE> \n";
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_CHOLMOD_SUPERNODAL_LLT << "'>\n"; 
  out << "   <TYPE> LLT</TYPE> \n";
  out << "   <PACKAGE> CHOLMOD </PACKAGE> \n";
  out << "  </SOLVER> \n";
  
  out <<"  <SOLVER ID='" << EIGEN_CHOLMOD_LDLT << "'>\n"; 
  out << "   <TYPE> LDLT </TYPE> \n";
  out << "   <PACKAGE> CHOLMOD </PACKAGE> \n";  
  out << "  </SOLVER> \n"; 
#endif
#ifdef EIGEN_PARDISO_SUPPORT
  out <<"  <SOLVER ID='" << EIGEN_PARDISO << "'>\n"; 
  out << "   <TYPE> LU </TYPE> \n";
  out << "   <PACKAGE> PARDISO </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_PARDISO_LLT << "'>\n"; 
  out << "   <TYPE> LLT </TYPE> \n";
  out << "   <PACKAGE> PARDISO </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_PARDISO_LDLT << "'>\n"; 
  out << "   <TYPE> LDLT </TYPE> \n";
  out << "   <PACKAGE> PARDISO </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
#endif
#ifdef EIGEN_PASTIX_SUPPORT
  out <<"  <SOLVER ID='" << EIGEN_PASTIX << "'>\n"; 
  out << "   <TYPE> LU </TYPE> \n";
  out << "   <PACKAGE> PASTIX </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_PASTIX_LLT << "'>\n"; 
  out << "   <TYPE> LLT </TYPE> \n";
  out << "   <PACKAGE> PASTIX </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_PASTIX_LDLT << "'>\n"; 
  out << "   <TYPE> LDLT </TYPE> \n";
  out << "   <PACKAGE> PASTIX </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
#endif
  
  out <<"  <SOLVER ID='" << EIGEN_BICGSTAB << "'>\n"; 
  out << "   <TYPE> BICGSTAB </TYPE> \n";
  out << "   <PACKAGE> EIGEN </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_BICGSTAB_ILUT << "'>\n"; 
  out << "   <TYPE> BICGSTAB_ILUT </TYPE> \n";
  out << "   <PACKAGE> EIGEN </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_GMRES_ILUT << "'>\n"; 
  out << "   <TYPE> GMRES_ILUT </TYPE> \n";
  out << "   <PACKAGE> EIGEN </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_SIMPLICIAL_LDLT << "'>\n"; 
  out << "   <TYPE> LDLT </TYPE> \n";
  out << "   <PACKAGE> EIGEN </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_SIMPLICIAL_LLT << "'>\n"; 
  out << "   <TYPE> LLT </TYPE> \n";
  out << "   <PACKAGE> EIGEN </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_CG << "'>\n"; 
  out << "   <TYPE> CG </TYPE> \n";
  out << "   <PACKAGE> EIGEN </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
  out <<"  <SOLVER ID='" << EIGEN_SPARSELU_COLAMD << "'>\n"; 
  out << "   <TYPE> LU_COLAMD </TYPE> \n";
  out << "   <PACKAGE> EIGEN </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
  
#ifdef EIGEN_METIS_SUPPORT
  out <<"  <SOLVER ID='" << EIGEN_SPARSELU_METIS << "'>\n"; 
  out << "   <TYPE> LU_METIS </TYPE> \n";
  out << "   <PACKAGE> EIGEN </PACKAGE> \n"; 
  out << "  </SOLVER> \n"; 
#endif
  out << " </AVAILSOLVER> \n"; 
  
}


template<typename Solver, typename Scalar>
void call_solver(Solver &solver, const int solver_id, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX,std::ofstream& statbuf)
{
  
  double total_time;
  double compute_time;
  double solve_time; 
  double rel_error;
  Matrix<Scalar, Dynamic, 1> x; 
  BenchTimer timer; 
  timer.reset();
  timer.start();
  solver.compute(A); 
  if (solver.info() != Success)
  {
    std::cerr << "Solver failed ... \n";
    return;
  }
  timer.stop();
  compute_time = timer.value();
  statbuf << "    <TIME>\n"; 
  statbuf << "     <COMPUTE> " << timer.value() << "</COMPUTE>\n";
  std::cout<< "COMPUTE TIME : " << timer.value() <<std::endl; 
    
  timer.reset();
  timer.start();
  x = solver.solve(b); 
  if (solver.info() == NumericalIssue)
  {
    std::cerr << "Solver failed ... \n";
    return;
  }
  timer.stop();
  solve_time = timer.value();
  statbuf << "     <SOLVE> " << timer.value() << "</SOLVE>\n"; 
  std::cout<< "SOLVE TIME : " << timer.value() <<std::endl; 
  
  total_time = solve_time + compute_time;
  statbuf << "     <TOTAL> " << total_time << "</TOTAL>\n"; 
  std::cout<< "TOTAL TIME : " << total_time <<std::endl; 
  statbuf << "    </TIME>\n"; 
  
  // Verify the relative error
  if(refX.size() != 0)
    rel_error = (refX - x).norm()/refX.norm();
  else 
  {
    // Compute the relative residual norm
    Matrix<Scalar, Dynamic, 1> temp; 
    temp = A * x; 
    rel_error = (b-temp).norm()/b.norm();
  }
  statbuf << "    <ERROR> " << rel_error << "</ERROR>\n"; 
  std::cout<< "REL. ERROR : " << rel_error << "\n\n" ;
  if ( rel_error <= RelErr )
  {
    // check the best time if convergence
    if(!best_time_val || (best_time_val > total_time))
    {
      best_time_val = total_time;
      best_time_id = solver_id;
    }
  }
}

template<typename Solver, typename Scalar>
void call_directsolver(Solver& solver, const int solver_id, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, std::string& statFile)
{
    std::ofstream statbuf(statFile.c_str(), std::ios::app);
    statbuf << "   <SOLVER_STAT ID='" << solver_id <<"'>\n"; 
    call_solver(solver, solver_id, A, b, refX,statbuf);
    statbuf << "   </SOLVER_STAT>\n";
    statbuf.close();
}

template<typename Solver, typename Scalar>
void call_itersolver(Solver &solver, const int solver_id, const typename Solver::MatrixType& A, const Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, std::string& statFile)
{
  solver.setTolerance(RelErr); 
  solver.setMaxIterations(MaximumIters);
  
  std::ofstream statbuf(statFile.c_str(), std::ios::app);
  statbuf << " <SOLVER_STAT ID='" << solver_id <<"'>\n"; 
  call_solver(solver, solver_id, A, b, refX,statbuf); 
  statbuf << "   <ITER> "<< solver.iterations() << "</ITER>\n";
  statbuf << " </SOLVER_STAT>\n";
  std::cout << "ITERATIONS : " << solver.iterations() <<"\n\n\n"; 
  
}


template <typename Scalar>
void SelectSolvers(const SparseMatrix<Scalar>&A, unsigned int sym, Matrix<Scalar, Dynamic, 1>& b, const Matrix<Scalar, Dynamic, 1>& refX, std::string& statFile)
{
  typedef SparseMatrix<Scalar, ColMajor> SpMat; 
  // First, deal with Nonsymmetric and symmetric matrices
  best_time_id = 0; 
  best_time_val = 0.0;
  //UMFPACK
  #ifdef EIGEN_UMFPACK_SUPPORT
  {
    cout << "Solving with UMFPACK LU ... \n"; 
    UmfPackLU<SpMat> solver; 
    call_directsolver(solver, EIGEN_UMFPACK, A, b, refX,statFile); 
  }
  #endif
    //SuperLU
  #ifdef EIGEN_SUPERLU_SUPPORT
  {
    cout << "\nSolving with SUPERLU ... \n"; 
    SuperLU<SpMat> solver;
    call_directsolver(solver, EIGEN_SUPERLU, A, b, refX,statFile); 
  }
  #endif
    
   // PaStix LU
  #ifdef EIGEN_PASTIX_SUPPORT
  {
    cout << "\nSolving with PASTIX LU ... \n"; 
    PastixLU<SpMat> solver; 
    call_directsolver(solver, EIGEN_PASTIX, A, b, refX,statFile) ;
  }
  #endif

   //PARDISO LU
  #ifdef EIGEN_PARDISO_SUPPORT
  {
    cout << "\nSolving with PARDISO LU ... \n"; 
    PardisoLU<SpMat>  solver; 
    call_directsolver(solver, EIGEN_PARDISO, A, b, refX,statFile);
  }
  #endif
  
  // Eigen SparseLU METIS
  cout << "\n Solving with Sparse LU AND COLAMD ... \n";
  SparseLU<SpMat, COLAMDOrdering<int> >   solver;
  call_directsolver(solver, EIGEN_SPARSELU_COLAMD, A, b, refX, statFile); 
  // Eigen SparseLU METIS
  #ifdef EIGEN_METIS_SUPPORT
  {
    cout << "\n Solving with Sparse LU AND METIS ... \n";
    SparseLU<SpMat, MetisOrdering<int> >   solver;
    call_directsolver(solver, EIGEN_SPARSELU_METIS, A, b, refX, statFile); 
  }
  #endif
  
  //BiCGSTAB
  {
    cout << "\nSolving with BiCGSTAB ... \n"; 
    BiCGSTAB<SpMat> solver; 
    call_itersolver(solver, EIGEN_BICGSTAB, A, b, refX,statFile);
  }
  //BiCGSTAB+ILUT
  {
    cout << "\nSolving with BiCGSTAB and ILUT ... \n"; 
    BiCGSTAB<SpMat, IncompleteLUT<Scalar> > solver; 
    call_itersolver(solver, EIGEN_BICGSTAB_ILUT, A, b, refX,statFile); 
  }
  
   
  //GMRES
//   {
//     cout << "\nSolving with GMRES ... \n"; 
//     GMRES<SpMat> solver; 
//     call_itersolver(solver, EIGEN_GMRES, A, b, refX,statFile); 
//   }
  //GMRES+ILUT
  {
    cout << "\nSolving with GMRES and ILUT ... \n"; 
    GMRES<SpMat, IncompleteLUT<Scalar> > solver; 
    call_itersolver(solver, EIGEN_GMRES_ILUT, A, b, refX,statFile);
  }
  
  // Hermitian and not necessarily positive-definites
  if (sym != NonSymmetric)
  {
    // Internal Cholesky
    {
      cout << "\nSolving with Simplicial LDLT ... \n"; 
      SimplicialLDLT<SpMat, Lower> solver;
      call_directsolver(solver, EIGEN_SIMPLICIAL_LDLT, A, b, refX,statFile); 
    }
    
    // CHOLMOD
    #ifdef EIGEN_CHOLMOD_SUPPORT
    {
      cout << "\nSolving with CHOLMOD LDLT ... \n"; 
      CholmodDecomposition<SpMat, Lower> solver;
      solver.setMode(CholmodLDLt);
       call_directsolver(solver,EIGEN_CHOLMOD_LDLT, A, b, refX,statFile);
    }
    #endif
    
    //PASTIX LLT
    #ifdef EIGEN_PASTIX_SUPPORT
    {
      cout << "\nSolving with PASTIX LDLT ... \n"; 
      PastixLDLT<SpMat, Lower> solver; 
      call_directsolver(solver,EIGEN_PASTIX_LDLT, A, b, refX,statFile); 
    }
    #endif
    
    //PARDISO LLT
    #ifdef EIGEN_PARDISO_SUPPORT
    {
      cout << "\nSolving with PARDISO LDLT ... \n"; 
      PardisoLDLT<SpMat, Lower> solver; 
      call_directsolver(solver,EIGEN_PARDISO_LDLT, A, b, refX,statFile); 
    }
    #endif
  }

   // Now, symmetric POSITIVE DEFINITE matrices
  if (sym == SPD)
  {
    
    //Internal Sparse Cholesky
    {
      cout << "\nSolving with SIMPLICIAL LLT ... \n"; 
      SimplicialLLT<SpMat, Lower> solver; 
      call_directsolver(solver,EIGEN_SIMPLICIAL_LLT, A, b, refX,statFile); 
    }
    
    // CHOLMOD
    #ifdef EIGEN_CHOLMOD_SUPPORT
    {
      // CholMOD SuperNodal LLT
      cout << "\nSolving with CHOLMOD LLT (Supernodal)... \n"; 
      CholmodDecomposition<SpMat, Lower> solver;
      solver.setMode(CholmodSupernodalLLt);
       call_directsolver(solver,EIGEN_CHOLMOD_SUPERNODAL_LLT, A, b, refX,statFile);
      // CholMod Simplicial LLT
      cout << "\nSolving with CHOLMOD LLT (Simplicial) ... \n"; 
      solver.setMode(CholmodSimplicialLLt);
      call_directsolver(solver,EIGEN_CHOLMOD_SIMPLICIAL_LLT, A, b, refX,statFile);
    }
    #endif
    
    //PASTIX LLT
    #ifdef EIGEN_PASTIX_SUPPORT
    {
      cout << "\nSolving with PASTIX LLT ... \n"; 
      PastixLLT<SpMat, Lower> solver; 
      call_directsolver(solver,EIGEN_PASTIX_LLT, A, b, refX,statFile);
    }
    #endif
    
    //PARDISO LLT
    #ifdef EIGEN_PARDISO_SUPPORT
    {
      cout << "\nSolving with PARDISO LLT ... \n"; 
      PardisoLLT<SpMat, Lower> solver; 
      call_directsolver(solver,EIGEN_PARDISO_LLT, A, b, refX,statFile); 
    }
    #endif
    
    // Internal CG
    {
      cout << "\nSolving with CG ... \n"; 
      ConjugateGradient<SpMat, Lower> solver; 
      call_itersolver(solver,EIGEN_CG, A, b, refX,statFile);
    }
    //CG+IdentityPreconditioner
//     {
//       cout << "\nSolving with CG and IdentityPreconditioner ... \n"; 
//       ConjugateGradient<SpMat, Lower, IdentityPreconditioner> solver; 
//       call_itersolver(solver,EIGEN_CG_PRECOND, A, b, refX,statFile);
//     }
  } // End SPD matrices 
}

/* Browse all the matrices available in the specified folder 
 * and solve the associated linear system.
 * The results of each solve are printed in the standard output
 * and optionally in the provided html file
 */
template <typename Scalar>
void Browse_Matrices(const string folder, bool statFileExists, std::string& statFile, int maxiters, double tol)
{
  MaximumIters = maxiters; // Maximum number of iterations, global variable 
  RelErr = tol;  //Relative residual error  as stopping criterion for iterative solvers
  MatrixMarketIterator<Scalar> it(folder);
  for ( ; it; ++it)
  {
    //print the infos for this linear system 
    if(statFileExists)
    {
      std::ofstream statbuf(statFile.c_str(), std::ios::app);
      statbuf << "<LINEARSYSTEM> \n";
      statbuf << "   <MATRIX> \n";
      statbuf << "     <NAME> " << it.matname() << " </NAME>\n"; 
      statbuf << "     <SIZE> " << it.matrix().rows() << " </SIZE>\n"; 
      statbuf << "     <ENTRIES> " << it.matrix().nonZeros() << "</ENTRIES>\n";
      if (it.sym()!=NonSymmetric)
      {
        statbuf << "     <SYMMETRY> Symmetric </SYMMETRY>\n" ; 
        if (it.sym() == SPD) 
          statbuf << "     <POSDEF> YES </POSDEF>\n"; 
        else 
          statbuf << "     <POSDEF> NO </POSDEF>\n"; 
          
      }
      else
      {
        statbuf << "     <SYMMETRY> NonSymmetric </SYMMETRY>\n" ; 
        statbuf << "     <POSDEF> NO </POSDEF>\n"; 
      }
      statbuf << "   </MATRIX> \n";
      statbuf.close();
    }
    
    cout<< "\n\n===================================================== \n";
    cout<< " ======  SOLVING WITH MATRIX " << it.matname() << " ====\n";
    cout<< " =================================================== \n\n";
    Matrix<Scalar, Dynamic, 1> refX;
    if(it.hasrefX()) refX = it.refX();
    // Call all suitable solvers for this linear system 
    SelectSolvers<Scalar>(it.matrix(), it.sym(), it.rhs(), refX, statFile);
    
    if(statFileExists)
    {
      std::ofstream statbuf(statFile.c_str(), std::ios::app);
      statbuf << "  <BEST_SOLVER ID='"<< best_time_id
              << "'></BEST_SOLVER>\n"; 
      statbuf << " </LINEARSYSTEM> \n"; 
      statbuf.close();
    }
  } 
} 

bool get_options(int argc, char **args, string option, string* value=0)
{
  int idx = 1, found=false; 
  while (idx<argc && !found){
    if (option.compare(args[idx]) == 0){
      found = true; 
      if(value) *value = args[idx+1];
    }
    idx+=2;
  }
  return found; 
}