jacobisvd.cpp 17.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

// discard stack allocation as that too bypasses malloc
#define EIGEN_STACK_ALLOCATION_LIMIT 0
#define EIGEN_RUNTIME_NO_MALLOC
#include "main.h"
#include <Eigen/SVD>

template<typename MatrixType, int QRPreconditioner>
void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd)
{
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType;
  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType;

  MatrixType sigma = MatrixType::Zero(rows,cols);
  sigma.diagonal() = svd.singularValues().template cast<Scalar>();
  MatrixUType u = svd.matrixU();
  MatrixVType v = svd.matrixV();

  VERIFY_IS_APPROX(m, u * sigma * v.adjoint());
  VERIFY_IS_UNITARY(u);
  VERIFY_IS_UNITARY(v);
}

template<typename MatrixType, int QRPreconditioner>
void jacobisvd_compare_to_full(const MatrixType& m,
                               unsigned int computationOptions,
                               const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd)
{
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();
  Index diagSize = (std::min)(rows, cols);

  JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);

  VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues());
  if(computationOptions & ComputeFullU)
    VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU());
  if(computationOptions & ComputeThinU)
    VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize));
  if(computationOptions & ComputeFullV)
    VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV());
  if(computationOptions & ComputeThinV)
    VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize));
}

template<typename MatrixType, int QRPreconditioner>
void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType;
  typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType;

  RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols));
  JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions);

       if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8);
  else if(internal::is_same<RealScalar,float>::value)  svd.setThreshold(1e-4);
  
  SolutionType x = svd.solve(rhs);
  
  RealScalar residual = (m*x-rhs).norm();
  // Check that there is no significantly better solution in the neighborhood of x
  if(!test_isMuchSmallerThan(residual,rhs.norm()))
  {
    // If the residual is very small, then we have an exact solution, so we are already good.
    for(int k=0;k<x.rows();++k)
    {
      SolutionType y(x);
      y.row(k).array() += 2*NumTraits<RealScalar>::epsilon();
      RealScalar residual_y = (m*y-rhs).norm();
      VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
      
      y.row(k) = x.row(k).array() - 2*NumTraits<RealScalar>::epsilon();
      residual_y = (m*y-rhs).norm();
      VERIFY( test_isApprox(residual_y,residual) || residual < residual_y );
    }
  }
  
  // evaluate normal equation which works also for least-squares solutions
  if(internal::is_same<RealScalar,double>::value)
  {
    // This test is not stable with single precision.
    // This is probably because squaring m signicantly affects the precision.
    VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs);
  }
  
  // check minimal norm solutions
  {
    // generate a full-rank m x n problem with m<n
    enum {
      RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1,
      RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1
    };
    typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2;
    typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2;
    typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T;
    Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2);
    MatrixType2 m2(rank,cols);
    int guard = 0;
    do {
      m2.setRandom();
    } while(m2.jacobiSvd().setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10);
    VERIFY(guard<10);
    RhsType2 rhs2 = RhsType2::Random(rank);
    // use QR to find a reference minimal norm solution
    HouseholderQR<MatrixType2T> qr(m2.adjoint());
    Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2);
    tmp.conservativeResize(cols);
    tmp.tail(cols-rank).setZero();
    SolutionType x21 = qr.householderQ() * tmp;
    // now check with SVD
    JacobiSVD<MatrixType2, ColPivHouseholderQRPreconditioner> svd2(m2, computationOptions);
    SolutionType x22 = svd2.solve(rhs2);
    VERIFY_IS_APPROX(m2*x21, rhs2);
    VERIFY_IS_APPROX(m2*x22, rhs2);
    VERIFY_IS_APPROX(x21, x22);
    
    // Now check with a rank deficient matrix
    typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3;
    typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3;
    Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3);
    Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank);
    MatrixType3 m3 = C * m2;
    RhsType3 rhs3 = C * rhs2;
    JacobiSVD<MatrixType3, ColPivHouseholderQRPreconditioner> svd3(m3, computationOptions);
    SolutionType x3 = svd3.solve(rhs3);
    if(svd3.rank()!=rank) {
      std::cout << m3 << "\n\n";
      std::cout << svd3.singularValues().transpose() << "\n";
    std::cout << svd3.rank() << " == " << rank << "\n";
    std::cout << x21.norm() << " == " << x3.norm() << "\n";
    }
//     VERIFY_IS_APPROX(m3*x3, rhs3);
    VERIFY_IS_APPROX(m3*x21, rhs3);
    VERIFY_IS_APPROX(m2*x3, rhs2);
    
    VERIFY_IS_APPROX(x21, x3);
  }
}

template<typename MatrixType, int QRPreconditioner>
void jacobisvd_test_all_computation_options(const MatrixType& m)
{
  if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols())
    return;
  JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV);
  CALL_SUBTEST(( jacobisvd_check_full(m, fullSvd) ));
  CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV) ));
  
  #if defined __INTEL_COMPILER
  // remark #111: statement is unreachable
  #pragma warning disable 111
  #endif
  if(QRPreconditioner == FullPivHouseholderQRPreconditioner)
    return;

  CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU, fullSvd) ));
  CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullV, fullSvd) ));
  CALL_SUBTEST(( jacobisvd_compare_to_full(m, 0, fullSvd) ));

  if (MatrixType::ColsAtCompileTime == Dynamic) {
    // thin U/V are only available with dynamic number of columns
    CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) ));
    CALL_SUBTEST(( jacobisvd_compare_to_full(m,              ComputeThinV, fullSvd) ));
    CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) ));
    CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU             , fullSvd) ));
    CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) ));
    CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV) ));
    CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV) ));
    CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV) ));

    // test reconstruction
    typedef typename MatrixType::Index Index;
    Index diagSize = (std::min)(m.rows(), m.cols());
    JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV);
    VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint());
  }
}

template<typename MatrixType>
void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true)
{
  MatrixType m = a;
  if(pickrandom)
  {
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    Index diagSize = (std::min)(a.rows(), a.cols());
    RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4;
    s = internal::random<RealScalar>(1,s);
    Matrix<RealScalar,Dynamic,1> d =  Matrix<RealScalar,Dynamic,1>::Random(diagSize);
    for(Index k=0; k<diagSize; ++k)
      d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
    m = Matrix<Scalar,Dynamic,Dynamic>::Random(a.rows(),diagSize) * d.asDiagonal() * Matrix<Scalar,Dynamic,Dynamic>::Random(diagSize,a.cols());
    // cancel some coeffs
    Index n  = internal::random<Index>(0,m.size()-1);
    for(Index i=0; i<n; ++i)
      m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0);
  }

  CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m) ));
  CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m) ));
  CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m) ));
  CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m) ));
}

template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::Index Index;
  Index rows = m.rows();
  Index cols = m.cols();

  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime,
    ColsAtCompileTime = MatrixType::ColsAtCompileTime
  };

  typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType;

  RhsType rhs(rows);

  JacobiSVD<MatrixType> svd;
  VERIFY_RAISES_ASSERT(svd.matrixU())
  VERIFY_RAISES_ASSERT(svd.singularValues())
  VERIFY_RAISES_ASSERT(svd.matrixV())
  VERIFY_RAISES_ASSERT(svd.solve(rhs))

  MatrixType a = MatrixType::Zero(rows, cols);
  a.setZero();
  svd.compute(a, 0);
  VERIFY_RAISES_ASSERT(svd.matrixU())
  VERIFY_RAISES_ASSERT(svd.matrixV())
  svd.singularValues();
  VERIFY_RAISES_ASSERT(svd.solve(rhs))

  if (ColsAtCompileTime == Dynamic)
  {
    svd.compute(a, ComputeThinU);
    svd.matrixU();
    VERIFY_RAISES_ASSERT(svd.matrixV())
    VERIFY_RAISES_ASSERT(svd.solve(rhs))

    svd.compute(a, ComputeThinV);
    svd.matrixV();
    VERIFY_RAISES_ASSERT(svd.matrixU())
    VERIFY_RAISES_ASSERT(svd.solve(rhs))

    JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr;
    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV))
    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV))
    VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV))
  }
  else
  {
    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU))
    VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV))
  }
}

template<typename MatrixType>
void jacobisvd_method()
{
  enum { Size = MatrixType::RowsAtCompileTime };
  typedef typename MatrixType::RealScalar RealScalar;
  typedef Matrix<RealScalar, Size, 1> RealVecType;
  MatrixType m = MatrixType::Identity();
  VERIFY_IS_APPROX(m.jacobiSvd().singularValues(), RealVecType::Ones());
  VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixU());
  VERIFY_RAISES_ASSERT(m.jacobiSvd().matrixV());
  VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m);
}

// work around stupid msvc error when constructing at compile time an expression that involves
// a division by zero, even if the numeric type has floating point
template<typename Scalar>
EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); }

// workaround aggressive optimization in ICC
template<typename T> EIGEN_DONT_INLINE  T sub(T a, T b) { return a - b; }

template<typename MatrixType>
void jacobisvd_inf_nan()
{
  // all this function does is verify we don't iterate infinitely on nan/inf values

  JacobiSVD<MatrixType> svd;
  typedef typename MatrixType::Scalar Scalar;
  Scalar some_inf = Scalar(1) / zero<Scalar>();
  VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf));
  svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV);

  Scalar nan = std::numeric_limits<Scalar>::quiet_NaN();
  VERIFY(nan != nan);
  svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV);

  MatrixType m = MatrixType::Zero(10,10);
  m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf;
  svd.compute(m, ComputeFullU | ComputeFullV);

  m = MatrixType::Zero(10,10);
  m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan;
  svd.compute(m, ComputeFullU | ComputeFullV);
  
  // regression test for bug 791
  m.resize(3,3);
  m << 0,    2*NumTraits<Scalar>::epsilon(),  0.5,
       0,   -0.5,                             0,
       nan,  0,                               0;
  svd.compute(m, ComputeFullU | ComputeFullV);
}

// Regression test for bug 286: JacobiSVD loops indefinitely with some
// matrices containing denormal numbers.
void jacobisvd_bug286()
{
#if defined __INTEL_COMPILER
// shut up warning #239: floating point underflow
#pragma warning push
#pragma warning disable 239
#endif
  Matrix2d M;
  M << -7.90884e-313, -4.94e-324,
                 0, 5.60844e-313;
#if defined __INTEL_COMPILER
#pragma warning pop
#endif
  JacobiSVD<Matrix2d> svd;
  svd.compute(M); // just check we don't loop indefinitely
}

void jacobisvd_preallocate()
{
  Vector3f v(3.f, 2.f, 1.f);
  MatrixXf m = v.asDiagonal();

  internal::set_is_malloc_allowed(false);
  VERIFY_RAISES_ASSERT(VectorXf tmp(10);)
  JacobiSVD<MatrixXf> svd;
  internal::set_is_malloc_allowed(true);
  svd.compute(m);
  VERIFY_IS_APPROX(svd.singularValues(), v);

  JacobiSVD<MatrixXf> svd2(3,3);
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);
  VERIFY_IS_APPROX(svd2.singularValues(), v);
  VERIFY_RAISES_ASSERT(svd2.matrixU());
  VERIFY_RAISES_ASSERT(svd2.matrixV());
  svd2.compute(m, ComputeFullU | ComputeFullV);
  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);

  JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV);
  internal::set_is_malloc_allowed(false);
  svd2.compute(m);
  internal::set_is_malloc_allowed(true);
  VERIFY_IS_APPROX(svd2.singularValues(), v);
  VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity());
  VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity());
  internal::set_is_malloc_allowed(false);
  svd2.compute(m, ComputeFullU|ComputeFullV);
  internal::set_is_malloc_allowed(true);
}

void test_jacobisvd()
{
  CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) ));
  CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) ));
  CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) ));
  CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) ));

  for(int i = 0; i < g_repeat; i++) {
    Matrix2cd m;
    m << 0, 1,
         0, 1;
    CALL_SUBTEST_1(( jacobisvd(m, false) ));
    m << 1, 0,
         1, 0;
    CALL_SUBTEST_1(( jacobisvd(m, false) ));

    Matrix2d n;
    n << 0, 0,
         0, 0;
    CALL_SUBTEST_2(( jacobisvd(n, false) ));
    n << 0, 0,
         0, 1;
    CALL_SUBTEST_2(( jacobisvd(n, false) ));
    
    CALL_SUBTEST_3(( jacobisvd<Matrix3f>() ));
    CALL_SUBTEST_4(( jacobisvd<Matrix4d>() ));
    CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() ));
    CALL_SUBTEST_6(( jacobisvd<Matrix<double,Dynamic,2> >(Matrix<double,Dynamic,2>(10,2)) ));

    int r = internal::random<int>(1, 30),
        c = internal::random<int>(1, 30);
    
    TEST_SET_BUT_UNUSED_VARIABLE(r)
    TEST_SET_BUT_UNUSED_VARIABLE(c)
    
    CALL_SUBTEST_10(( jacobisvd<MatrixXd>(MatrixXd(r,c)) ));
    CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(r,c)) ));
    CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(r,c)) ));
    (void) r;
    (void) c;

    // Test on inf/nan matrix
    CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() );
    CALL_SUBTEST_10( jacobisvd_inf_nan<MatrixXd>() );
  }

  CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
  CALL_SUBTEST_8(( jacobisvd<MatrixXcd>(MatrixXcd(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/3))) ));

  // test matrixbase method
  CALL_SUBTEST_1(( jacobisvd_method<Matrix2cd>() ));
  CALL_SUBTEST_3(( jacobisvd_method<Matrix3f>() ));

  // Test problem size constructors
  CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) );

  // Check that preallocation avoids subsequent mallocs
  CALL_SUBTEST_9( jacobisvd_preallocate() );

  // Regression check for bug 286
  CALL_SUBTEST_2( jacobisvd_bug286() );
}