ArpackSelfAdjointEigenSolver.h 29.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 David Harmon <dharmon@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.

#ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
#define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H

#include <Eigen/Dense>

namespace Eigen { 

namespace internal {
  template<typename Scalar, typename RealScalar> struct arpack_wrapper;
  template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> struct OP;
}



template<typename MatrixType, typename MatrixSolver=SimplicialLLT<MatrixType>, bool BisSPD=false>
class ArpackGeneralizedSelfAdjointEigenSolver
{
public:
  //typedef typename MatrixSolver::MatrixType MatrixType;

  /** \brief Scalar type for matrices of type \p MatrixType. */
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::Index Index;

  /** \brief Real scalar type for \p MatrixType.
   *
   * This is just \c Scalar if #Scalar is real (e.g., \c float or
   * \c Scalar), and the type of the real part of \c Scalar if #Scalar is
   * complex.
   */
  typedef typename NumTraits<Scalar>::Real RealScalar;

  /** \brief Type for vector of eigenvalues as returned by eigenvalues().
   *
   * This is a column vector with entries of type #RealScalar.
   * The length of the vector is the size of \p nbrEigenvalues.
   */
  typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;

  /** \brief Default constructor.
   *
   * The default constructor is for cases in which the user intends to
   * perform decompositions via compute().
   *
   */
  ArpackGeneralizedSelfAdjointEigenSolver()
   : m_eivec(),
     m_eivalues(),
     m_isInitialized(false),
     m_eigenvectorsOk(false),
     m_nbrConverged(0),
     m_nbrIterations(0)
  { }

  /** \brief Constructor; computes generalized eigenvalues of given matrix with respect to another matrix.
   *
   * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
   *    computed. By default, the upper triangular part is used, but can be changed
   *    through the template parameter.
   * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem.
   * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
   *    Must be less than the size of the input matrix, or an error is returned.
   * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
   *    respective meanings to find the largest magnitude , smallest magnitude,
   *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
   *    value can contain floating point value in string form, in which case the
   *    eigenvalues closest to this value will be found.
   * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
   * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
   *    means machine precision.
   *
   * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar)
   * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if
   * \p options equals #ComputeEigenvectors.
   *
   */
  ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, const MatrixType& B,
                                          Index nbrEigenvalues, std::string eigs_sigma="LM",
                               int options=ComputeEigenvectors, RealScalar tol=0.0)
    : m_eivec(),
      m_eivalues(),
      m_isInitialized(false),
      m_eigenvectorsOk(false),
      m_nbrConverged(0),
      m_nbrIterations(0)
  {
    compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
  }

  /** \brief Constructor; computes eigenvalues of given matrix.
   *
   * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
   *    computed. By default, the upper triangular part is used, but can be changed
   *    through the template parameter.
   * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
   *    Must be less than the size of the input matrix, or an error is returned.
   * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
   *    respective meanings to find the largest magnitude , smallest magnitude,
   *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
   *    value can contain floating point value in string form, in which case the
   *    eigenvalues closest to this value will be found.
   * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
   * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
   *    means machine precision.
   *
   * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar)
   * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if
   * \p options equals #ComputeEigenvectors.
   *
   */

  ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A,
                                          Index nbrEigenvalues, std::string eigs_sigma="LM",
                               int options=ComputeEigenvectors, RealScalar tol=0.0)
    : m_eivec(),
      m_eivalues(),
      m_isInitialized(false),
      m_eigenvectorsOk(false),
      m_nbrConverged(0),
      m_nbrIterations(0)
  {
    compute(A, nbrEigenvalues, eigs_sigma, options, tol);
  }


  /** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library.
   *
   * \param[in]  A  Selfadjoint matrix whose eigendecomposition is to be computed.
   * \param[in]  B  Selfadjoint matrix for generalized eigenvalues.
   * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
   *    Must be less than the size of the input matrix, or an error is returned.
   * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
   *    respective meanings to find the largest magnitude , smallest magnitude,
   *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
   *    value can contain floating point value in string form, in which case the
   *    eigenvalues closest to this value will be found.
   * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
   * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
   *    means machine precision.
   *
   * \returns    Reference to \c *this
   *
   * This function computes the generalized eigenvalues of \p A with respect to \p B using ARPACK.  The eigenvalues()
   * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors,
   * then the eigenvectors are also computed and can be retrieved by
   * calling eigenvectors().
   *
   */
  ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B,
                                                   Index nbrEigenvalues, std::string eigs_sigma="LM",
                                        int options=ComputeEigenvectors, RealScalar tol=0.0);
  
  /** \brief Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library.
   *
   * \param[in]  A  Selfadjoint matrix whose eigendecomposition is to be computed.
   * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
   *    Must be less than the size of the input matrix, or an error is returned.
   * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
   *    respective meanings to find the largest magnitude , smallest magnitude,
   *    largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
   *    value can contain floating point value in string form, in which case the
   *    eigenvalues closest to this value will be found.
   * \param[in]  options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
   * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
   *    means machine precision.
   *
   * \returns    Reference to \c *this
   *
   * This function computes the eigenvalues of \p A using ARPACK.  The eigenvalues()
   * function can be used to retrieve them.  If \p options equals #ComputeEigenvectors,
   * then the eigenvectors are also computed and can be retrieved by
   * calling eigenvectors().
   *
   */
  ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A,
                                                   Index nbrEigenvalues, std::string eigs_sigma="LM",
                                        int options=ComputeEigenvectors, RealScalar tol=0.0);


  /** \brief Returns the eigenvectors of given matrix.
   *
   * \returns  A const reference to the matrix whose columns are the eigenvectors.
   *
   * \pre The eigenvectors have been computed before.
   *
   * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
   * to eigenvalue number \f$ k \f$ as returned by eigenvalues().  The
   * eigenvectors are normalized to have (Euclidean) norm equal to one. If
   * this object was used to solve the eigenproblem for the selfadjoint
   * matrix \f$ A \f$, then the matrix returned by this function is the
   * matrix \f$ V \f$ in the eigendecomposition \f$ A V = D V \f$.
   * For the generalized eigenproblem, the matrix returned is the solution \f$ A V = D B V \f$
   *
   * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
   * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
   *
   * \sa eigenvalues()
   */
  const Matrix<Scalar, Dynamic, Dynamic>& eigenvectors() const
  {
    eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
    eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
    return m_eivec;
  }

  /** \brief Returns the eigenvalues of given matrix.
   *
   * \returns A const reference to the column vector containing the eigenvalues.
   *
   * \pre The eigenvalues have been computed before.
   *
   * The eigenvalues are repeated according to their algebraic multiplicity,
   * so there are as many eigenvalues as rows in the matrix. The eigenvalues
   * are sorted in increasing order.
   *
   * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
   * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
   *
   * \sa eigenvectors(), MatrixBase::eigenvalues()
   */
  const Matrix<Scalar, Dynamic, 1>& eigenvalues() const
  {
    eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
    return m_eivalues;
  }

  /** \brief Computes the positive-definite square root of the matrix.
   *
   * \returns the positive-definite square root of the matrix
   *
   * \pre The eigenvalues and eigenvectors of a positive-definite matrix
   * have been computed before.
   *
   * The square root of a positive-definite matrix \f$ A \f$ is the
   * positive-definite matrix whose square equals \f$ A \f$. This function
   * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
   * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
   *
   * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
   * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
   *
   * \sa operatorInverseSqrt(),
   *     \ref MatrixFunctions_Module "MatrixFunctions Module"
   */
  Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const
  {
    eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
    eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
    return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
  }

  /** \brief Computes the inverse square root of the matrix.
   *
   * \returns the inverse positive-definite square root of the matrix
   *
   * \pre The eigenvalues and eigenvectors of a positive-definite matrix
   * have been computed before.
   *
   * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
   * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
   * cheaper than first computing the square root with operatorSqrt() and
   * then its inverse with MatrixBase::inverse().
   *
   * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
   * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
   *
   * \sa operatorSqrt(), MatrixBase::inverse(),
   *     \ref MatrixFunctions_Module "MatrixFunctions Module"
   */
  Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const
  {
    eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
    eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
    return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
  }

  /** \brief Reports whether previous computation was successful.
   *
   * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
   */
  ComputationInfo info() const
  {
    eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
    return m_info;
  }

  size_t getNbrConvergedEigenValues() const
  { return m_nbrConverged; }

  size_t getNbrIterations() const
  { return m_nbrIterations; }

protected:
  Matrix<Scalar, Dynamic, Dynamic> m_eivec;
  Matrix<Scalar, Dynamic, 1> m_eivalues;
  ComputationInfo m_info;
  bool m_isInitialized;
  bool m_eigenvectorsOk;

  size_t m_nbrConverged;
  size_t m_nbrIterations;
};





template<typename MatrixType, typename MatrixSolver, bool BisSPD>
ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
    ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
::compute(const MatrixType& A, Index nbrEigenvalues,
          std::string eigs_sigma, int options, RealScalar tol)
{
    MatrixType B(0,0);
    compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
    
    return *this;
}


template<typename MatrixType, typename MatrixSolver, bool BisSPD>
ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
    ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues,
          std::string eigs_sigma, int options, RealScalar tol)
{
  eigen_assert(A.cols() == A.rows());
  eigen_assert(B.cols() == B.rows());
  eigen_assert(B.rows() == 0 || A.cols() == B.rows());
  eigen_assert((options &~ (EigVecMask | GenEigMask)) == 0
            && (options & EigVecMask) != EigVecMask
            && "invalid option parameter");

  bool isBempty = (B.rows() == 0) || (B.cols() == 0);

  // For clarity, all parameters match their ARPACK name
  //
  // Always 0 on the first call
  //
  int ido = 0;

  int n = (int)A.cols();

  // User options: "LA", "SA", "SM", "LM", "BE"
  //
  char whch[3] = "LM";
    
  // Specifies the shift if iparam[6] = { 3, 4, 5 }, not used if iparam[6] = { 1, 2 }
  //
  RealScalar sigma = 0.0;

  if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))
  {
      eigs_sigma[0] = toupper(eigs_sigma[0]);
      eigs_sigma[1] = toupper(eigs_sigma[1]);

      // In the following special case we're going to invert the problem, since solving
      // for larger magnitude is much much faster
      // i.e., if 'SM' is specified, we're going to really use 'LM', the default
      //
      if (eigs_sigma.substr(0,2) != "SM")
      {
          whch[0] = eigs_sigma[0];
          whch[1] = eigs_sigma[1];
      }
  }
  else
  {
      eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!");

      // If it's not scalar values, then the user may be explicitly
      // specifying the sigma value to cluster the evs around
      //
      sigma = atof(eigs_sigma.c_str());

      // If atof fails, it returns 0.0, which is a fine default
      //
  }

  // "I" means normal eigenvalue problem, "G" means generalized
  //
  char bmat[2] = "I";
  if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD))
      bmat[0] = 'G';

  // Now we determine the mode to use
  //
  int mode = (bmat[0] == 'G') + 1;
  if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])))
  {
      // We're going to use shift-and-invert mode, and basically find
      // the largest eigenvalues of the inverse operator
      //
      mode = 3;
  }

  // The user-specified number of eigenvalues/vectors to compute
  //
  int nev = (int)nbrEigenvalues;

  // Allocate space for ARPACK to store the residual
  //
  Scalar *resid = new Scalar[n];

  // Number of Lanczos vectors, must satisfy nev < ncv <= n
  // Note that this indicates that nev != n, and we cannot compute
  // all eigenvalues of a mtrix
  //
  int ncv = std::min(std::max(2*nev, 20), n);

  // The working n x ncv matrix, also store the final eigenvectors (if computed)
  //
  Scalar *v = new Scalar[n*ncv];
  int ldv = n;

  // Working space
  //
  Scalar *workd = new Scalar[3*n];
  int lworkl = ncv*ncv+8*ncv; // Must be at least this length
  Scalar *workl = new Scalar[lworkl];

  int *iparam= new int[11];
  iparam[0] = 1; // 1 means we let ARPACK perform the shifts, 0 means we'd have to do it
  iparam[2] = std::max(300, (int)std::ceil(2*n/std::max(ncv,1)));
  iparam[6] = mode; // The mode, 1 is standard ev problem, 2 for generalized ev, 3 for shift-and-invert

  // Used during reverse communicate to notify where arrays start
  //
  int *ipntr = new int[11]; 

  // Error codes are returned in here, initial value of 0 indicates a random initial
  // residual vector is used, any other values means resid contains the initial residual
  // vector, possibly from a previous run
  //
  int info = 0;

  Scalar scale = 1.0;
  //if (!isBempty)
  //{
  //Scalar scale = B.norm() / std::sqrt(n);
  //scale = std::pow(2, std::floor(std::log(scale+1)));
  ////M /= scale;
  //for (size_t i=0; i<(size_t)B.outerSize(); i++)
  //    for (typename MatrixType::InnerIterator it(B, i); it; ++it)
  //        it.valueRef() /= scale;
  //}

  MatrixSolver OP;
  if (mode == 1 || mode == 2)
  {
      if (!isBempty)
          OP.compute(B);
  }
  else if (mode == 3)
  {
      if (sigma == 0.0)
      {
          OP.compute(A);
      }
      else
      {
          // Note: We will never enter here because sigma must be 0.0
          //
          if (isBempty)
          {
            MatrixType AminusSigmaB(A);
            for (Index i=0; i<A.rows(); ++i)
                AminusSigmaB.coeffRef(i,i) -= sigma;
            
            OP.compute(AminusSigmaB);
          }
          else
          {
              MatrixType AminusSigmaB = A - sigma * B;
              OP.compute(AminusSigmaB);
          }
      }
  }
 
  if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success)
      std::cout << "Error factoring matrix" << std::endl;

  do
  {
    internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid, 
                                                        &ncv, v, &ldv, iparam, ipntr, workd, workl,
                                                        &lworkl, &info);

    if (ido == -1 || ido == 1)
    {
      Scalar *in  = workd + ipntr[0] - 1;
      Scalar *out = workd + ipntr[1] - 1;

      if (ido == 1 && mode != 2)
      {
          Scalar *out2 = workd + ipntr[2] - 1;
          if (isBempty || mode == 1)
            Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
          else
            Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
          
          in = workd + ipntr[2] - 1;
      }

      if (mode == 1)
      {
        if (isBempty)
        {
          // OP = A
          //
          Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
        }
        else
        {
          // OP = L^{-1}AL^{-T}
          //
          internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out);
        }
      }
      else if (mode == 2)
      {
        if (ido == 1)
          Matrix<Scalar, Dynamic, 1>::Map(in, n)  = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
        
        // OP = B^{-1} A
        //
        Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
      }
      else if (mode == 3)
      {
        // OP = (A-\sigmaB)B (\sigma could be 0, and B could be I)
        // The B * in is already computed and stored at in if ido == 1
        //
        if (ido == 1 || isBempty)
          Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
        else
          Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n));
      }
    }
    else if (ido == 2)
    {
      Scalar *in  = workd + ipntr[0] - 1;
      Scalar *out = workd + ipntr[1] - 1;

      if (isBempty || mode == 1)
        Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
      else
        Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
    }
  } while (ido != 99);

  if (info == 1)
    m_info = NoConvergence;
  else if (info == 3)
    m_info = NumericalIssue;
  else if (info < 0)
    m_info = InvalidInput;
  else if (info != 0)
    eigen_assert(false && "Unknown ARPACK return value!");
  else
  {
    // Do we compute eigenvectors or not?
    //
    int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors;

    // "A" means "All", use "S" to choose specific eigenvalues (not yet supported in ARPACK))
    //
    char howmny[2] = "A"; 

    // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK)
    //
    int *select = new int[ncv];

    // Final eigenvalues
    //
    m_eivalues.resize(nev, 1);

    internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv,
                                                        &sigma, bmat, &n, whch, &nev, &tol, resid, &ncv,
                                                        v, &ldv, iparam, ipntr, workd, workl, &lworkl, &info);

    if (info == -14)
      m_info = NoConvergence;
    else if (info != 0)
      m_info = InvalidInput;
    else
    {
      if (rvec)
      {
        m_eivec.resize(A.rows(), nev);
        for (int i=0; i<nev; i++)
          for (int j=0; j<n; j++)
            m_eivec(j,i) = v[i*n+j] / scale;
      
        if (mode == 1 && !isBempty && BisSPD)
          internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data());

        m_eigenvectorsOk = true;
      }

      m_nbrIterations = iparam[2];
      m_nbrConverged  = iparam[4];

      m_info = Success;
    }

    delete select;
  }

  delete v;
  delete iparam;
  delete ipntr;
  delete workd;
  delete workl;
  delete resid;

  m_isInitialized = true;

  return *this;
}


// Single precision
//
extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which,
    int *nev, float *tol, float *resid, int *ncv,
    float *v, int *ldv, int *iparam, int *ipntr,
    float *workd, float *workl, int *lworkl,
    int *info);

extern "C" void sseupd_(int *rvec, char *All, int *select, float *d,
    float *z, int *ldz, float *sigma, 
    char *bmat, int *n, char *which, int *nev,
    float *tol, float *resid, int *ncv, float *v,
    int *ldv, int *iparam, int *ipntr, float *workd,
    float *workl, int *lworkl, int *ierr);

// Double precision
//
extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which,
    int *nev, double *tol, double *resid, int *ncv,
    double *v, int *ldv, int *iparam, int *ipntr,
    double *workd, double *workl, int *lworkl,
    int *info);

extern "C" void dseupd_(int *rvec, char *All, int *select, double *d,
    double *z, int *ldz, double *sigma, 
    char *bmat, int *n, char *which, int *nev,
    double *tol, double *resid, int *ncv, double *v,
    int *ldv, int *iparam, int *ipntr, double *workd,
    double *workl, int *lworkl, int *ierr);


namespace internal {

template<typename Scalar, typename RealScalar> struct arpack_wrapper
{
  static inline void saupd(int *ido, char *bmat, int *n, char *which,
      int *nev, RealScalar *tol, Scalar *resid, int *ncv,
      Scalar *v, int *ldv, int *iparam, int *ipntr,
      Scalar *workd, Scalar *workl, int *lworkl, int *info)
  { 
    EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
  }

  static inline void seupd(int *rvec, char *All, int *select, Scalar *d,
      Scalar *z, int *ldz, RealScalar *sigma,
      char *bmat, int *n, char *which, int *nev,
      RealScalar *tol, Scalar *resid, int *ncv, Scalar *v,
      int *ldv, int *iparam, int *ipntr, Scalar *workd,
      Scalar *workl, int *lworkl, int *ierr)
  {
    EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
  }
};

template <> struct arpack_wrapper<float, float>
{
  static inline void saupd(int *ido, char *bmat, int *n, char *which,
      int *nev, float *tol, float *resid, int *ncv,
      float *v, int *ldv, int *iparam, int *ipntr,
      float *workd, float *workl, int *lworkl, int *info)
  {
    ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
  }

  static inline void seupd(int *rvec, char *All, int *select, float *d,
      float *z, int *ldz, float *sigma,
      char *bmat, int *n, char *which, int *nev,
      float *tol, float *resid, int *ncv, float *v,
      int *ldv, int *iparam, int *ipntr, float *workd,
      float *workl, int *lworkl, int *ierr)
  {
    sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
        workd, workl, lworkl, ierr);
  }
};

template <> struct arpack_wrapper<double, double>
{
  static inline void saupd(int *ido, char *bmat, int *n, char *which,
      int *nev, double *tol, double *resid, int *ncv,
      double *v, int *ldv, int *iparam, int *ipntr,
      double *workd, double *workl, int *lworkl, int *info)
  {
    dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
  }

  static inline void seupd(int *rvec, char *All, int *select, double *d,
      double *z, int *ldz, double *sigma,
      char *bmat, int *n, char *which, int *nev,
      double *tol, double *resid, int *ncv, double *v,
      int *ldv, int *iparam, int *ipntr, double *workd,
      double *workl, int *lworkl, int *ierr)
  {
    dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
        workd, workl, lworkl, ierr);
  }
};


template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD>
struct OP
{
    static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out);
    static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs);
};

template<typename MatrixSolver, typename MatrixType, typename Scalar>
struct OP<MatrixSolver, MatrixType, Scalar, true>
{
  static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
{
    // OP = L^{-1} A L^{-T}  (B = LL^T)
    //
    // First solve L^T out = in
    //
    Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
    Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n);

    // Then compute out = A out
    //
    Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n);

    // Then solve L out = out
    //
    Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
    Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n));
}

  static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
{
    // Solve L^T out = in
    //
    Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k));
    Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k);
}

};

template<typename MatrixSolver, typename MatrixType, typename Scalar>
struct OP<MatrixSolver, MatrixType, Scalar, false>
{
  static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
{
    eigen_assert(false && "Should never be in here...");
}

  static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
{
    eigen_assert(false && "Should never be in here...");
}

};

} // end namespace internal

} // end namespace Eigen

#endif // EIGEN_ARPACKSELFADJOINTEIGENSOLVER_H