SkylineMatrix.h 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Guillaume Saupin <guillaume.saupin@cea.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_SKYLINEMATRIX_H
#define EIGEN_SKYLINEMATRIX_H

#include "SkylineStorage.h"
#include "SkylineMatrixBase.h"

namespace Eigen { 

/** \ingroup Skyline_Module
 *
 * \class SkylineMatrix
 *
 * \brief The main skyline matrix class
 *
 * This class implements a skyline matrix using the very uncommon storage
 * scheme.
 *
 * \param _Scalar the scalar type, i.e. the type of the coefficients
 * \param _Options Union of bit flags controlling the storage scheme. Currently the only possibility
 *                 is RowMajor. The default is 0 which means column-major.
 *
 *
 */
namespace internal {
template<typename _Scalar, int _Options>
struct traits<SkylineMatrix<_Scalar, _Options> > {
    typedef _Scalar Scalar;
    typedef Sparse StorageKind;

    enum {
        RowsAtCompileTime = Dynamic,
        ColsAtCompileTime = Dynamic,
        MaxRowsAtCompileTime = Dynamic,
        MaxColsAtCompileTime = Dynamic,
        Flags = SkylineBit | _Options,
        CoeffReadCost = NumTraits<Scalar>::ReadCost,
    };
};
}

template<typename _Scalar, int _Options>
class SkylineMatrix
: public SkylineMatrixBase<SkylineMatrix<_Scalar, _Options> > {
public:
    EIGEN_SKYLINE_GENERIC_PUBLIC_INTERFACE(SkylineMatrix)
    EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, +=)
    EIGEN_SKYLINE_INHERIT_ASSIGNMENT_OPERATOR(SkylineMatrix, -=)

    using Base::IsRowMajor;

protected:

    typedef SkylineMatrix<Scalar, (Flags&~RowMajorBit) | (IsRowMajor ? RowMajorBit : 0) > TransposedSkylineMatrix;

    Index m_outerSize;
    Index m_innerSize;

public:
    Index* m_colStartIndex;
    Index* m_rowStartIndex;
    SkylineStorage<Scalar> m_data;

public:

    inline Index rows() const {
        return IsRowMajor ? m_outerSize : m_innerSize;
    }

    inline Index cols() const {
        return IsRowMajor ? m_innerSize : m_outerSize;
    }

    inline Index innerSize() const {
        return m_innerSize;
    }

    inline Index outerSize() const {
        return m_outerSize;
    }

    inline Index upperNonZeros() const {
        return m_data.upperSize();
    }

    inline Index lowerNonZeros() const {
        return m_data.lowerSize();
    }

    inline Index upperNonZeros(Index j) const {
        return m_colStartIndex[j + 1] - m_colStartIndex[j];
    }

    inline Index lowerNonZeros(Index j) const {
        return m_rowStartIndex[j + 1] - m_rowStartIndex[j];
    }

    inline const Scalar* _diagPtr() const {
        return &m_data.diag(0);
    }

    inline Scalar* _diagPtr() {
        return &m_data.diag(0);
    }

    inline const Scalar* _upperPtr() const {
        return &m_data.upper(0);
    }

    inline Scalar* _upperPtr() {
        return &m_data.upper(0);
    }

    inline const Scalar* _lowerPtr() const {
        return &m_data.lower(0);
    }

    inline Scalar* _lowerPtr() {
        return &m_data.lower(0);
    }

    inline const Index* _upperProfilePtr() const {
        return &m_data.upperProfile(0);
    }

    inline Index* _upperProfilePtr() {
        return &m_data.upperProfile(0);
    }

    inline const Index* _lowerProfilePtr() const {
        return &m_data.lowerProfile(0);
    }

    inline Index* _lowerProfilePtr() {
        return &m_data.lowerProfile(0);
    }

    inline Scalar coeff(Index row, Index col) const {
        const Index outer = IsRowMajor ? row : col;
        const Index inner = IsRowMajor ? col : row;

        eigen_assert(outer < outerSize());
        eigen_assert(inner < innerSize());

        if (outer == inner)
            return this->m_data.diag(outer);

        if (IsRowMajor) {
            if (inner > outer) //upper matrix
            {
                const Index minOuterIndex = inner - m_data.upperProfile(inner);
                if (outer >= minOuterIndex)
                    return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
                else
                    return Scalar(0);
            }
            if (inner < outer) //lower matrix
            {
                const Index minInnerIndex = outer - m_data.lowerProfile(outer);
                if (inner >= minInnerIndex)
                    return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
                else
                    return Scalar(0);
            }
            return m_data.upper(m_colStartIndex[inner] + outer - inner);
        } else {
            if (outer > inner) //upper matrix
            {
                const Index maxOuterIndex = inner + m_data.upperProfile(inner);
                if (outer <= maxOuterIndex)
                    return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
                else
                    return Scalar(0);
            }
            if (outer < inner) //lower matrix
            {
                const Index maxInnerIndex = outer + m_data.lowerProfile(outer);

                if (inner <= maxInnerIndex)
                    return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
                else
                    return Scalar(0);
            }
        }
    }

    inline Scalar& coeffRef(Index row, Index col) {
        const Index outer = IsRowMajor ? row : col;
        const Index inner = IsRowMajor ? col : row;

        eigen_assert(outer < outerSize());
        eigen_assert(inner < innerSize());

        if (outer == inner)
            return this->m_data.diag(outer);

        if (IsRowMajor) {
            if (col > row) //upper matrix
            {
                const Index minOuterIndex = inner - m_data.upperProfile(inner);
                eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
                return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
            }
            if (col < row) //lower matrix
            {
                const Index minInnerIndex = outer - m_data.lowerProfile(outer);
                eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
                return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
            }
        } else {
            if (outer > inner) //upper matrix
            {
                const Index maxOuterIndex = inner + m_data.upperProfile(inner);
                eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
                return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
            }
            if (outer < inner) //lower matrix
            {
                const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
                eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
                return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
            }
        }
    }

    inline Scalar coeffDiag(Index idx) const {
        eigen_assert(idx < outerSize());
        eigen_assert(idx < innerSize());
        return this->m_data.diag(idx);
    }

    inline Scalar coeffLower(Index row, Index col) const {
        const Index outer = IsRowMajor ? row : col;
        const Index inner = IsRowMajor ? col : row;

        eigen_assert(outer < outerSize());
        eigen_assert(inner < innerSize());
        eigen_assert(inner != outer);

        if (IsRowMajor) {
            const Index minInnerIndex = outer - m_data.lowerProfile(outer);
            if (inner >= minInnerIndex)
                return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
            else
                return Scalar(0);

        } else {
            const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
            if (inner <= maxInnerIndex)
                return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
            else
                return Scalar(0);
        }
    }

    inline Scalar coeffUpper(Index row, Index col) const {
        const Index outer = IsRowMajor ? row : col;
        const Index inner = IsRowMajor ? col : row;

        eigen_assert(outer < outerSize());
        eigen_assert(inner < innerSize());
        eigen_assert(inner != outer);

        if (IsRowMajor) {
            const Index minOuterIndex = inner - m_data.upperProfile(inner);
            if (outer >= minOuterIndex)
                return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
            else
                return Scalar(0);
        } else {
            const Index maxOuterIndex = inner + m_data.upperProfile(inner);
            if (outer <= maxOuterIndex)
                return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
            else
                return Scalar(0);
        }
    }

    inline Scalar& coeffRefDiag(Index idx) {
        eigen_assert(idx < outerSize());
        eigen_assert(idx < innerSize());
        return this->m_data.diag(idx);
    }

    inline Scalar& coeffRefLower(Index row, Index col) {
        const Index outer = IsRowMajor ? row : col;
        const Index inner = IsRowMajor ? col : row;

        eigen_assert(outer < outerSize());
        eigen_assert(inner < innerSize());
        eigen_assert(inner != outer);

        if (IsRowMajor) {
            const Index minInnerIndex = outer - m_data.lowerProfile(outer);
            eigen_assert(inner >= minInnerIndex && "you try to acces a coeff that do not exist in the storage");
            return this->m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
        } else {
            const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
            eigen_assert(inner <= maxInnerIndex && "you try to acces a coeff that do not exist in the storage");
            return this->m_data.lower(m_rowStartIndex[outer] + (inner - outer));
        }
    }

    inline bool coeffExistLower(Index row, Index col) {
        const Index outer = IsRowMajor ? row : col;
        const Index inner = IsRowMajor ? col : row;

        eigen_assert(outer < outerSize());
        eigen_assert(inner < innerSize());
        eigen_assert(inner != outer);

        if (IsRowMajor) {
            const Index minInnerIndex = outer - m_data.lowerProfile(outer);
            return inner >= minInnerIndex;
        } else {
            const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
            return inner <= maxInnerIndex;
        }
    }

    inline Scalar& coeffRefUpper(Index row, Index col) {
        const Index outer = IsRowMajor ? row : col;
        const Index inner = IsRowMajor ? col : row;

        eigen_assert(outer < outerSize());
        eigen_assert(inner < innerSize());
        eigen_assert(inner != outer);

        if (IsRowMajor) {
            const Index minOuterIndex = inner - m_data.upperProfile(inner);
            eigen_assert(outer >= minOuterIndex && "you try to acces a coeff that do not exist in the storage");
            return this->m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
        } else {
            const Index maxOuterIndex = inner + m_data.upperProfile(inner);
            eigen_assert(outer <= maxOuterIndex && "you try to acces a coeff that do not exist in the storage");
            return this->m_data.upper(m_colStartIndex[inner] + (outer - inner));
        }
    }

    inline bool coeffExistUpper(Index row, Index col) {
        const Index outer = IsRowMajor ? row : col;
        const Index inner = IsRowMajor ? col : row;

        eigen_assert(outer < outerSize());
        eigen_assert(inner < innerSize());
        eigen_assert(inner != outer);

        if (IsRowMajor) {
            const Index minOuterIndex = inner - m_data.upperProfile(inner);
            return outer >= minOuterIndex;
        } else {
            const Index maxOuterIndex = inner + m_data.upperProfile(inner);
            return outer <= maxOuterIndex;
        }
    }


protected:

public:
    class InnerUpperIterator;
    class InnerLowerIterator;

    class OuterUpperIterator;
    class OuterLowerIterator;

    /** Removes all non zeros */
    inline void setZero() {
        m_data.clear();
        memset(m_colStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
        memset(m_rowStartIndex, 0, (m_outerSize + 1) * sizeof (Index));
    }

    /** \returns the number of non zero coefficients */
    inline Index nonZeros() const {
        return m_data.diagSize() + m_data.upperSize() + m_data.lowerSize();
    }

    /** Preallocates \a reserveSize non zeros */
    inline void reserve(Index reserveSize, Index reserveUpperSize, Index reserveLowerSize) {
        m_data.reserve(reserveSize, reserveUpperSize, reserveLowerSize);
    }

    /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col.

     *
     * \warning This function can be extremely slow if the non zero coefficients
     * are not inserted in a coherent order.
     *
     * After an insertion session, you should call the finalize() function.
     */
    EIGEN_DONT_INLINE Scalar & insert(Index row, Index col) {
        const Index outer = IsRowMajor ? row : col;
        const Index inner = IsRowMajor ? col : row;

        eigen_assert(outer < outerSize());
        eigen_assert(inner < innerSize());

        if (outer == inner)
            return m_data.diag(col);

        if (IsRowMajor) {
            if (outer < inner) //upper matrix
            {
                Index minOuterIndex = 0;
                minOuterIndex = inner - m_data.upperProfile(inner);

                if (outer < minOuterIndex) //The value does not yet exist
                {
                    const Index previousProfile = m_data.upperProfile(inner);

                    m_data.upperProfile(inner) = inner - outer;


                    const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
                    //shift data stored after this new one
                    const Index stop = m_colStartIndex[cols()];
                    const Index start = m_colStartIndex[inner];


                    for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
                        m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
                    }

                    for (Index innerIdx = cols(); innerIdx > inner; innerIdx--) {
                        m_colStartIndex[innerIdx] += bandIncrement;
                    }

                    //zeros new data
                    memset(this->_upperPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));

                    return m_data.upper(m_colStartIndex[inner]);
                } else {
                    return m_data.upper(m_colStartIndex[inner] + outer - (inner - m_data.upperProfile(inner)));
                }
            }

            if (outer > inner) //lower matrix
            {
                const Index minInnerIndex = outer - m_data.lowerProfile(outer);
                if (inner < minInnerIndex) //The value does not yet exist
                {
                    const Index previousProfile = m_data.lowerProfile(outer);
                    m_data.lowerProfile(outer) = outer - inner;

                    const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
                    //shift data stored after this new one
                    const Index stop = m_rowStartIndex[rows()];
                    const Index start = m_rowStartIndex[outer];


                    for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
                        m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
                    }

                    for (Index innerIdx = rows(); innerIdx > outer; innerIdx--) {
                        m_rowStartIndex[innerIdx] += bandIncrement;
                    }

                    //zeros new data
                    memset(this->_lowerPtr() + start, 0, (bandIncrement - 1) * sizeof (Scalar));
                    return m_data.lower(m_rowStartIndex[outer]);
                } else {
                    return m_data.lower(m_rowStartIndex[outer] + inner - (outer - m_data.lowerProfile(outer)));
                }
            }
        } else {
            if (outer > inner) //upper matrix
            {
                const Index maxOuterIndex = inner + m_data.upperProfile(inner);
                if (outer > maxOuterIndex) //The value does not yet exist
                {
                    const Index previousProfile = m_data.upperProfile(inner);
                    m_data.upperProfile(inner) = outer - inner;

                    const Index bandIncrement = m_data.upperProfile(inner) - previousProfile;
                    //shift data stored after this new one
                    const Index stop = m_rowStartIndex[rows()];
                    const Index start = m_rowStartIndex[inner + 1];

                    for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
                        m_data.upper(innerIdx + bandIncrement) = m_data.upper(innerIdx);
                    }

                    for (Index innerIdx = inner + 1; innerIdx < outerSize() + 1; innerIdx++) {
                        m_rowStartIndex[innerIdx] += bandIncrement;
                    }
                    memset(this->_upperPtr() + m_rowStartIndex[inner] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
                    return m_data.upper(m_rowStartIndex[inner] + m_data.upperProfile(inner));
                } else {
                    return m_data.upper(m_rowStartIndex[inner] + (outer - inner));
                }
            }

            if (outer < inner) //lower matrix
            {
                const Index maxInnerIndex = outer + m_data.lowerProfile(outer);
                if (inner > maxInnerIndex) //The value does not yet exist
                {
                    const Index previousProfile = m_data.lowerProfile(outer);
                    m_data.lowerProfile(outer) = inner - outer;

                    const Index bandIncrement = m_data.lowerProfile(outer) - previousProfile;
                    //shift data stored after this new one
                    const Index stop = m_colStartIndex[cols()];
                    const Index start = m_colStartIndex[outer + 1];

                    for (Index innerIdx = stop; innerIdx >= start; innerIdx--) {
                        m_data.lower(innerIdx + bandIncrement) = m_data.lower(innerIdx);
                    }

                    for (Index innerIdx = outer + 1; innerIdx < outerSize() + 1; innerIdx++) {
                        m_colStartIndex[innerIdx] += bandIncrement;
                    }
                    memset(this->_lowerPtr() + m_colStartIndex[outer] + previousProfile + 1, 0, (bandIncrement - 1) * sizeof (Scalar));
                    return m_data.lower(m_colStartIndex[outer] + m_data.lowerProfile(outer));
                } else {
                    return m_data.lower(m_colStartIndex[outer] + (inner - outer));
                }
            }
        }
    }

    /** Must be called after inserting a set of non zero entries.
     */
    inline void finalize() {
        if (IsRowMajor) {
            if (rows() > cols())
                m_data.resize(cols(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);
            else
                m_data.resize(rows(), cols(), rows(), m_colStartIndex[cols()] + 1, m_rowStartIndex[rows()] + 1);

            //            eigen_assert(rows() == cols() && "memory reorganisatrion only works with suare matrix");
            //
            //            Scalar* newArray = new Scalar[m_colStartIndex[cols()] + 1 + m_rowStartIndex[rows()] + 1];
            //            Index dataIdx = 0;
            //            for (Index row = 0; row < rows(); row++) {
            //
            //                const Index nbLowerElts = m_rowStartIndex[row + 1] - m_rowStartIndex[row];
            //                //                std::cout << "nbLowerElts" << nbLowerElts << std::endl;
            //                memcpy(newArray + dataIdx, m_data.m_lower + m_rowStartIndex[row], nbLowerElts * sizeof (Scalar));
            //                m_rowStartIndex[row] = dataIdx;
            //                dataIdx += nbLowerElts;
            //
            //                const Index nbUpperElts = m_colStartIndex[row + 1] - m_colStartIndex[row];
            //                memcpy(newArray + dataIdx, m_data.m_upper + m_colStartIndex[row], nbUpperElts * sizeof (Scalar));
            //                m_colStartIndex[row] = dataIdx;
            //                dataIdx += nbUpperElts;
            //
            //
            //            }
            //            //todo : don't access m_data profile directly : add an accessor from SkylineMatrix
            //            m_rowStartIndex[rows()] = m_rowStartIndex[rows()-1] + m_data.lowerProfile(rows()-1);
            //            m_colStartIndex[cols()] = m_colStartIndex[cols()-1] + m_data.upperProfile(cols()-1);
            //
            //            delete[] m_data.m_lower;
            //            delete[] m_data.m_upper;
            //
            //            m_data.m_lower = newArray;
            //            m_data.m_upper = newArray;
        } else {
            if (rows() > cols())
                m_data.resize(cols(), rows(), cols(), m_rowStartIndex[cols()] + 1, m_colStartIndex[cols()] + 1);
            else
                m_data.resize(rows(), rows(), cols(), m_rowStartIndex[rows()] + 1, m_colStartIndex[rows()] + 1);
        }
    }

    inline void squeeze() {
        finalize();
        m_data.squeeze();
    }

    void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar > ()) {
        //TODO
    }

    /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero
     * \sa resizeNonZeros(Index), reserve(), setZero()
     */
    void resize(size_t rows, size_t cols) {
        const Index diagSize = rows > cols ? cols : rows;
        m_innerSize = IsRowMajor ? cols : rows;

        eigen_assert(rows == cols && "Skyline matrix must be square matrix");

        if (diagSize % 2) { // diagSize is odd
            const Index k = (diagSize - 1) / 2;

            m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
                    2 * k * k + k + 1,
                    2 * k * k + k + 1);

        } else // diagSize is even
        {
            const Index k = diagSize / 2;
            m_data.resize(diagSize, IsRowMajor ? cols : rows, IsRowMajor ? rows : cols,
                    2 * k * k - k + 1,
                    2 * k * k - k + 1);
        }

        if (m_colStartIndex && m_rowStartIndex) {
            delete[] m_colStartIndex;
            delete[] m_rowStartIndex;
        }
        m_colStartIndex = new Index [cols + 1];
        m_rowStartIndex = new Index [rows + 1];
        m_outerSize = diagSize;

        m_data.reset();
        m_data.clear();

        m_outerSize = diagSize;
        memset(m_colStartIndex, 0, (cols + 1) * sizeof (Index));
        memset(m_rowStartIndex, 0, (rows + 1) * sizeof (Index));
    }

    void resizeNonZeros(Index size) {
        m_data.resize(size);
    }

    inline SkylineMatrix()
    : m_outerSize(-1), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
        resize(0, 0);
    }

    inline SkylineMatrix(size_t rows, size_t cols)
    : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
        resize(rows, cols);
    }

    template<typename OtherDerived>
    inline SkylineMatrix(const SkylineMatrixBase<OtherDerived>& other)
    : m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
        *this = other.derived();
    }

    inline SkylineMatrix(const SkylineMatrix & other)
    : Base(), m_outerSize(0), m_innerSize(0), m_colStartIndex(0), m_rowStartIndex(0) {
        *this = other.derived();
    }

    inline void swap(SkylineMatrix & other) {
        //EIGEN_DBG_SKYLINE(std::cout << "SkylineMatrix:: swap\n");
        std::swap(m_colStartIndex, other.m_colStartIndex);
        std::swap(m_rowStartIndex, other.m_rowStartIndex);
        std::swap(m_innerSize, other.m_innerSize);
        std::swap(m_outerSize, other.m_outerSize);
        m_data.swap(other.m_data);
    }

    inline SkylineMatrix & operator=(const SkylineMatrix & other) {
        std::cout << "SkylineMatrix& operator=(const SkylineMatrix& other)\n";
        if (other.isRValue()) {
            swap(other.const_cast_derived());
        } else {
            resize(other.rows(), other.cols());
            memcpy(m_colStartIndex, other.m_colStartIndex, (m_outerSize + 1) * sizeof (Index));
            memcpy(m_rowStartIndex, other.m_rowStartIndex, (m_outerSize + 1) * sizeof (Index));
            m_data = other.m_data;
        }
        return *this;
    }

    template<typename OtherDerived>
            inline SkylineMatrix & operator=(const SkylineMatrixBase<OtherDerived>& other) {
        const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit);
        if (needToTranspose) {
            //         TODO
            //            return *this;
        } else {
            // there is no special optimization
            return SkylineMatrixBase<SkylineMatrix>::operator=(other.derived());
        }
    }

    friend std::ostream & operator <<(std::ostream & s, const SkylineMatrix & m) {

        EIGEN_DBG_SKYLINE(
        std::cout << "upper elements : " << std::endl;
        for (Index i = 0; i < m.m_data.upperSize(); i++)
            std::cout << m.m_data.upper(i) << "\t";
        std::cout << std::endl;
        std::cout << "upper profile : " << std::endl;
        for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
            std::cout << m.m_data.upperProfile(i) << "\t";
        std::cout << std::endl;
        std::cout << "lower startIdx : " << std::endl;
        for (Index i = 0; i < m.m_data.upperProfileSize(); i++)
            std::cout << (IsRowMajor ? m.m_colStartIndex[i] : m.m_rowStartIndex[i]) << "\t";
        std::cout << std::endl;


        std::cout << "lower elements : " << std::endl;
        for (Index i = 0; i < m.m_data.lowerSize(); i++)
            std::cout << m.m_data.lower(i) << "\t";
        std::cout << std::endl;
        std::cout << "lower profile : " << std::endl;
        for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
            std::cout << m.m_data.lowerProfile(i) << "\t";
        std::cout << std::endl;
        std::cout << "lower startIdx : " << std::endl;
        for (Index i = 0; i < m.m_data.lowerProfileSize(); i++)
            std::cout << (IsRowMajor ? m.m_rowStartIndex[i] : m.m_colStartIndex[i]) << "\t";
        std::cout << std::endl;
        );
        for (Index rowIdx = 0; rowIdx < m.rows(); rowIdx++) {
            for (Index colIdx = 0; colIdx < m.cols(); colIdx++) {
                s << m.coeff(rowIdx, colIdx) << "\t";
            }
            s << std::endl;
        }
        return s;
    }

    /** Destructor */
    inline ~SkylineMatrix() {
        delete[] m_colStartIndex;
        delete[] m_rowStartIndex;
    }

    /** Overloaded for performance */
    Scalar sum() const;
};

template<typename Scalar, int _Options>
class SkylineMatrix<Scalar, _Options>::InnerUpperIterator {
public:

    InnerUpperIterator(const SkylineMatrix& mat, Index outer)
    : m_matrix(mat), m_outer(outer),
    m_id(_Options == RowMajor ? mat.m_colStartIndex[outer] : mat.m_rowStartIndex[outer] + 1),
    m_start(m_id),
    m_end(_Options == RowMajor ? mat.m_colStartIndex[outer + 1] : mat.m_rowStartIndex[outer + 1] + 1) {
    }

    inline InnerUpperIterator & operator++() {
        m_id++;
        return *this;
    }

    inline InnerUpperIterator & operator+=(Index shift) {
        m_id += shift;
        return *this;
    }

    inline Scalar value() const {
        return m_matrix.m_data.upper(m_id);
    }

    inline Scalar* valuePtr() {
        return const_cast<Scalar*> (&(m_matrix.m_data.upper(m_id)));
    }

    inline Scalar& valueRef() {
        return const_cast<Scalar&> (m_matrix.m_data.upper(m_id));
    }

    inline Index index() const {
        return IsRowMajor ? m_outer - m_matrix.m_data.upperProfile(m_outer) + (m_id - m_start) :
                m_outer + (m_id - m_start) + 1;
    }

    inline Index row() const {
        return IsRowMajor ? index() : m_outer;
    }

    inline Index col() const {
        return IsRowMajor ? m_outer : index();
    }

    inline size_t size() const {
        return m_matrix.m_data.upperProfile(m_outer);
    }

    inline operator bool() const {
        return (m_id < m_end) && (m_id >= m_start);
    }

protected:
    const SkylineMatrix& m_matrix;
    const Index m_outer;
    Index m_id;
    const Index m_start;
    const Index m_end;
};

template<typename Scalar, int _Options>
class SkylineMatrix<Scalar, _Options>::InnerLowerIterator {
public:

    InnerLowerIterator(const SkylineMatrix& mat, Index outer)
    : m_matrix(mat),
    m_outer(outer),
    m_id(_Options == RowMajor ? mat.m_rowStartIndex[outer] : mat.m_colStartIndex[outer] + 1),
    m_start(m_id),
    m_end(_Options == RowMajor ? mat.m_rowStartIndex[outer + 1] : mat.m_colStartIndex[outer + 1] + 1) {
    }

    inline InnerLowerIterator & operator++() {
        m_id++;
        return *this;
    }

    inline InnerLowerIterator & operator+=(Index shift) {
        m_id += shift;
        return *this;
    }

    inline Scalar value() const {
        return m_matrix.m_data.lower(m_id);
    }

    inline Scalar* valuePtr() {
        return const_cast<Scalar*> (&(m_matrix.m_data.lower(m_id)));
    }

    inline Scalar& valueRef() {
        return const_cast<Scalar&> (m_matrix.m_data.lower(m_id));
    }

    inline Index index() const {
        return IsRowMajor ? m_outer - m_matrix.m_data.lowerProfile(m_outer) + (m_id - m_start) :
                m_outer + (m_id - m_start) + 1;
        ;
    }

    inline Index row() const {
        return IsRowMajor ? m_outer : index();
    }

    inline Index col() const {
        return IsRowMajor ? index() : m_outer;
    }

    inline size_t size() const {
        return m_matrix.m_data.lowerProfile(m_outer);
    }

    inline operator bool() const {
        return (m_id < m_end) && (m_id >= m_start);
    }

protected:
    const SkylineMatrix& m_matrix;
    const Index m_outer;
    Index m_id;
    const Index m_start;
    const Index m_end;
};

} // end namespace Eigen

#endif // EIGEN_SkylineMatrix_H