LDLT.h 21.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Keir Mierle <mierle@gmail.com>
// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
// Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com >
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_LDLT_H
#define EIGEN_LDLT_H

namespace Eigen { 

namespace internal {
  template<typename MatrixType, int UpLo> struct LDLT_Traits;

  // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef
  enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite };
}

/** \ingroup Cholesky_Module
  *
  * \class LDLT
  *
  * \brief Robust Cholesky decomposition of a matrix with pivoting
  *
  * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition
  * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper.
  *             The other triangular part won't be read.
  *
  * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite
  * matrix \f$ A \f$ such that \f$ A =  P^TLDL^*P \f$, where P is a permutation matrix, L
  * is lower triangular with a unit diagonal and D is a diagonal matrix.
  *
  * The decomposition uses pivoting to ensure stability, so that L will have
  * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root
  * on D also stabilizes the computation.
  *
  * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky
  * decomposition to determine whether a system of equations has a solution.
  *
  * \sa MatrixBase::ldlt(), class LLT
  */
template<typename _MatrixType, int _UpLo> class LDLT
{
  public:
    typedef _MatrixType MatrixType;
    enum {
      RowsAtCompileTime = MatrixType::RowsAtCompileTime,
      ColsAtCompileTime = MatrixType::ColsAtCompileTime,
      Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here!
      MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
      MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
      UpLo = _UpLo
    };
    typedef typename MatrixType::Scalar Scalar;
    typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
    typedef typename MatrixType::Index Index;
    typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType;

    typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType;
    typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType;

    typedef internal::LDLT_Traits<MatrixType,UpLo> Traits;

    /** \brief Default Constructor.
      *
      * The default constructor is useful in cases in which the user intends to
      * perform decompositions via LDLT::compute(const MatrixType&).
      */
    LDLT() 
      : m_matrix(), 
        m_transpositions(), 
        m_sign(internal::ZeroSign),
        m_isInitialized(false) 
    {}

    /** \brief Default Constructor with memory preallocation
      *
      * Like the default constructor but with preallocation of the internal data
      * according to the specified problem \a size.
      * \sa LDLT()
      */
    LDLT(Index size)
      : m_matrix(size, size),
        m_transpositions(size),
        m_temporary(size),
        m_sign(internal::ZeroSign),
        m_isInitialized(false)
    {}

    /** \brief Constructor with decomposition
      *
      * This calculates the decomposition for the input \a matrix.
      * \sa LDLT(Index size)
      */
    LDLT(const MatrixType& matrix)
      : m_matrix(matrix.rows(), matrix.cols()),
        m_transpositions(matrix.rows()),
        m_temporary(matrix.rows()),
        m_sign(internal::ZeroSign),
        m_isInitialized(false)
    {
      compute(matrix);
    }

    /** Clear any existing decomposition
     * \sa rankUpdate(w,sigma)
     */
    void setZero()
    {
      m_isInitialized = false;
    }

    /** \returns a view of the upper triangular matrix U */
    inline typename Traits::MatrixU matrixU() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return Traits::getU(m_matrix);
    }

    /** \returns a view of the lower triangular matrix L */
    inline typename Traits::MatrixL matrixL() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return Traits::getL(m_matrix);
    }

    /** \returns the permutation matrix P as a transposition sequence.
      */
    inline const TranspositionType& transpositionsP() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_transpositions;
    }

    /** \returns the coefficients of the diagonal matrix D */
    inline Diagonal<const MatrixType> vectorD() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_matrix.diagonal();
    }

    /** \returns true if the matrix is positive (semidefinite) */
    inline bool isPositive() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign;
    }
    
    #ifdef EIGEN2_SUPPORT
    inline bool isPositiveDefinite() const
    {
      return isPositive();
    }
    #endif

    /** \returns true if the matrix is negative (semidefinite) */
    inline bool isNegative(void) const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign;
    }

    /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A.
      *
      * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> .
      *
      * \note_about_checking_solutions
      *
      * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$
      * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, 
      * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then
      * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the
      * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function
      * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular.
      *
      * \sa MatrixBase::ldlt()
      */
    template<typename Rhs>
    inline const internal::solve_retval<LDLT, Rhs>
    solve(const MatrixBase<Rhs>& b) const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      eigen_assert(m_matrix.rows()==b.rows()
                && "LDLT::solve(): invalid number of rows of the right hand side matrix b");
      return internal::solve_retval<LDLT, Rhs>(*this, b.derived());
    }

    #ifdef EIGEN2_SUPPORT
    template<typename OtherDerived, typename ResultType>
    bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const
    {
      *result = this->solve(b);
      return true;
    }
    #endif

    template<typename Derived>
    bool solveInPlace(MatrixBase<Derived> &bAndX) const;

    LDLT& compute(const MatrixType& matrix);

    template <typename Derived>
    LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1);

    /** \returns the internal LDLT decomposition matrix
      *
      * TODO: document the storage layout
      */
    inline const MatrixType& matrixLDLT() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return m_matrix;
    }

    MatrixType reconstructedMatrix() const;

    inline Index rows() const { return m_matrix.rows(); }
    inline Index cols() const { return m_matrix.cols(); }

    /** \brief Reports whether previous computation was successful.
      *
      * \returns \c Success if computation was succesful,
      *          \c NumericalIssue if the matrix.appears to be negative.
      */
    ComputationInfo info() const
    {
      eigen_assert(m_isInitialized && "LDLT is not initialized.");
      return Success;
    }

  protected:
    
    static void check_template_parameters()
    {
      EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
    }

    /** \internal
      * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U.
      * The strict upper part is used during the decomposition, the strict lower
      * part correspond to the coefficients of L (its diagonal is equal to 1 and
      * is not stored), and the diagonal entries correspond to D.
      */
    MatrixType m_matrix;
    TranspositionType m_transpositions;
    TmpMatrixType m_temporary;
    internal::SignMatrix m_sign;
    bool m_isInitialized;
};

namespace internal {

template<int UpLo> struct ldlt_inplace;

template<> struct ldlt_inplace<Lower>
{
  template<typename MatrixType, typename TranspositionType, typename Workspace>
  static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
  {
    using std::abs;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;
    eigen_assert(mat.rows()==mat.cols());
    const Index size = mat.rows();

    if (size <= 1)
    {
      transpositions.setIdentity();
      if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef;
      else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef;
      else sign = ZeroSign;
      return true;
    }

    for (Index k = 0; k < size; ++k)
    {
      // Find largest diagonal element
      Index index_of_biggest_in_corner;
      mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner);
      index_of_biggest_in_corner += k;

      transpositions.coeffRef(k) = index_of_biggest_in_corner;
      if(k != index_of_biggest_in_corner)
      {
        // apply the transposition while taking care to consider only
        // the lower triangular part
        Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element
        mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k));
        mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s));
        std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner));
        for(int i=k+1;i<index_of_biggest_in_corner;++i)
        {
          Scalar tmp = mat.coeffRef(i,k);
          mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i));
          mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp);
        }
        if(NumTraits<Scalar>::IsComplex)
          mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k));
      }

      // partition the matrix:
      //       A00 |  -  |  -
      // lu  = A10 | A11 |  -
      //       A20 | A21 | A22
      Index rs = size - k - 1;
      Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1);
      Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k);
      Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k);

      if(k>0)
      {
        temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint();
        mat.coeffRef(k,k) -= (A10 * temp.head(k)).value();
        if(rs>0)
          A21.noalias() -= A20 * temp.head(k);
      }
      
      // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot
      // was smaller than the cutoff value. However, soince LDLT is not rank-revealing
      // we should only make sure we do not introduce INF or NaN values.
      // LAPACK also uses 0 as the cutoff value.
      RealScalar realAkk = numext::real(mat.coeffRef(k,k));
      if((rs>0) && (abs(realAkk) > RealScalar(0)))
        A21 /= realAkk;

      if (sign == PositiveSemiDef) {
        if (realAkk < 0) sign = Indefinite;
      } else if (sign == NegativeSemiDef) {
        if (realAkk > 0) sign = Indefinite;
      } else if (sign == ZeroSign) {
        if (realAkk > 0) sign = PositiveSemiDef;
        else if (realAkk < 0) sign = NegativeSemiDef;
      }
    }

    return true;
  }

  // Reference for the algorithm: Davis and Hager, "Multiple Rank
  // Modifications of a Sparse Cholesky Factorization" (Algorithm 1)
  // Trivial rearrangements of their computations (Timothy E. Holy)
  // allow their algorithm to work for rank-1 updates even if the
  // original matrix is not of full rank.
  // Here only rank-1 updates are implemented, to reduce the
  // requirement for intermediate storage and improve accuracy
  template<typename MatrixType, typename WDerived>
  static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1)
  {
    using numext::isfinite;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef typename MatrixType::Index Index;

    const Index size = mat.rows();
    eigen_assert(mat.cols() == size && w.size()==size);

    RealScalar alpha = 1;

    // Apply the update
    for (Index j = 0; j < size; j++)
    {
      // Check for termination due to an original decomposition of low-rank
      if (!(isfinite)(alpha))
        break;

      // Update the diagonal terms
      RealScalar dj = numext::real(mat.coeff(j,j));
      Scalar wj = w.coeff(j);
      RealScalar swj2 = sigma*numext::abs2(wj);
      RealScalar gamma = dj*alpha + swj2;

      mat.coeffRef(j,j) += swj2/alpha;
      alpha += swj2/dj;


      // Update the terms of L
      Index rs = size-j-1;
      w.tail(rs) -= wj * mat.col(j).tail(rs);
      if(gamma != 0)
        mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs);
    }
    return true;
  }

  template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
  static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1)
  {
    // Apply the permutation to the input w
    tmp = transpositions * w;

    return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma);
  }
};

template<> struct ldlt_inplace<Upper>
{
  template<typename MatrixType, typename TranspositionType, typename Workspace>
  static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign)
  {
    Transpose<MatrixType> matt(mat);
    return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign);
  }

  template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType>
  static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1)
  {
    Transpose<MatrixType> matt(mat);
    return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma);
  }
};

template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower>
{
  typedef const TriangularView<const MatrixType, UnitLower> MatrixL;
  typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU;
  static inline MatrixL getL(const MatrixType& m) { return m; }
  static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); }
};

template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper>
{
  typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL;
  typedef const TriangularView<const MatrixType, UnitUpper> MatrixU;
  static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); }
  static inline MatrixU getU(const MatrixType& m) { return m; }
};

} // end namespace internal

/** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix
  */
template<typename MatrixType, int _UpLo>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a)
{
  check_template_parameters();
  
  eigen_assert(a.rows()==a.cols());
  const Index size = a.rows();

  m_matrix = a;

  m_transpositions.resize(size);
  m_isInitialized = false;
  m_temporary.resize(size);
  m_sign = internal::ZeroSign;

  internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign);

  m_isInitialized = true;
  return *this;
}

/** Update the LDLT decomposition:  given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T.
 * \param w a vector to be incorporated into the decomposition.
 * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1.
 * \sa setZero()
  */
template<typename MatrixType, int _UpLo>
template<typename Derived>
LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma)
{
  const Index size = w.rows();
  if (m_isInitialized)
  {
    eigen_assert(m_matrix.rows()==size);
  }
  else
  {    
    m_matrix.resize(size,size);
    m_matrix.setZero();
    m_transpositions.resize(size);
    for (Index i = 0; i < size; i++)
      m_transpositions.coeffRef(i) = i;
    m_temporary.resize(size);
    m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef;
    m_isInitialized = true;
  }

  internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma);

  return *this;
}

namespace internal {
template<typename _MatrixType, int _UpLo, typename Rhs>
struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs>
  : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs>
{
  typedef LDLT<_MatrixType,_UpLo> LDLTType;
  EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    eigen_assert(rhs().rows() == dec().matrixLDLT().rows());
    // dst = P b
    dst = dec().transpositionsP() * rhs();

    // dst = L^-1 (P b)
    dec().matrixL().solveInPlace(dst);

    // dst = D^-1 (L^-1 P b)
    // more precisely, use pseudo-inverse of D (see bug 241)
    using std::abs;
    using std::max;
    typedef typename LDLTType::MatrixType MatrixType;
    typedef typename LDLTType::RealScalar RealScalar;
    const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD());
    // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon
    // as motivated by LAPACK's xGELSS:
    // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest());
    // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest
    // diagonal element is not well justified and to numerical issues in some cases.
    // Moreover, Lapack's xSYTRS routines use 0 for the tolerance.
    RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest();
    
    for (Index i = 0; i < vectorD.size(); ++i) {
      if(abs(vectorD(i)) > tolerance)
        dst.row(i) /= vectorD(i);
      else
        dst.row(i).setZero();
    }

    // dst = L^-T (D^-1 L^-1 P b)
    dec().matrixU().solveInPlace(dst);

    // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b
    dst = dec().transpositionsP().transpose() * dst;
  }
};
}

/** \internal use x = ldlt_object.solve(x);
  *
  * This is the \em in-place version of solve().
  *
  * \param bAndX represents both the right-hand side matrix b and result x.
  *
  * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD.
  *
  * This version avoids a copy when the right hand side matrix b is not
  * needed anymore.
  *
  * \sa LDLT::solve(), MatrixBase::ldlt()
  */
template<typename MatrixType,int _UpLo>
template<typename Derived>
bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const
{
  eigen_assert(m_isInitialized && "LDLT is not initialized.");
  eigen_assert(m_matrix.rows() == bAndX.rows());

  bAndX = this->solve(bAndX);

  return true;
}

/** \returns the matrix represented by the decomposition,
 * i.e., it returns the product: P^T L D L^* P.
 * This function is provided for debug purpose. */
template<typename MatrixType, int _UpLo>
MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const
{
  eigen_assert(m_isInitialized && "LDLT is not initialized.");
  const Index size = m_matrix.rows();
  MatrixType res(size,size);

  // P
  res.setIdentity();
  res = transpositionsP() * res;
  // L^* P
  res = matrixU() * res;
  // D(L^*P)
  res = vectorD().real().asDiagonal() * res;
  // L(DL^*P)
  res = matrixL() * res;
  // P^T (LDL^*P)
  res = transpositionsP().transpose() * res;

  return res;
}

/** \cholesky_module
  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
  */
template<typename MatrixType, unsigned int UpLo>
inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo>
SelfAdjointView<MatrixType, UpLo>::ldlt() const
{
  return LDLT<PlainObject,UpLo>(m_matrix);
}

/** \cholesky_module
  * \returns the Cholesky decomposition with full pivoting without square root of \c *this
  */
template<typename Derived>
inline const LDLT<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::ldlt() const
{
  return LDLT<PlainObject>(derived());
}

} // end namespace Eigen

#endif // EIGEN_LDLT_H