quaternion_demo.cpp 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include "quaternion_demo.h"
#include "icosphere.h"

#include <Eigen/Geometry>
#include <Eigen/QR>
#include <Eigen/LU>

#include <iostream>
#include <QEvent>
#include <QMouseEvent>
#include <QInputDialog>
#include <QGridLayout>
#include <QButtonGroup>
#include <QRadioButton>
#include <QDockWidget>
#include <QPushButton>
#include <QGroupBox>

using namespace Eigen;

class FancySpheres
{
  public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW
    
    FancySpheres()
    {
      const int levels = 4;
      const float scale = 0.33;
      float radius = 100;
      std::vector<int> parents;

      // leval 0
      mCenters.push_back(Vector3f::Zero());
      parents.push_back(-1);
      mRadii.push_back(radius);

      // generate level 1 using icosphere vertices
      radius *= 0.45;
      {
        float dist = mRadii[0]*0.9;
        for (int i=0; i<12; ++i)
        {
          mCenters.push_back(mIcoSphere.vertices()[i] * dist);
          mRadii.push_back(radius);
          parents.push_back(0);
        }
      }

      static const float angles [10] = {
        0, 0,
        M_PI, 0.*M_PI,
        M_PI, 0.5*M_PI,
        M_PI, 1.*M_PI,
        M_PI, 1.5*M_PI
      };

      // generate other levels
      int start = 1;
      for (int l=1; l<levels; l++)
      {
        radius *= scale;
        int end = mCenters.size();
        for (int i=start; i<end; ++i)
        {
          Vector3f c = mCenters[i];
          Vector3f ax0 = (c - mCenters[parents[i]]).normalized();
          Vector3f ax1 = ax0.unitOrthogonal();
          Quaternionf q;
          q.setFromTwoVectors(Vector3f::UnitZ(), ax0);
          Affine3f t = Translation3f(c) * q * Scaling(mRadii[i]+radius);
          for (int j=0; j<5; ++j)
          {
            Vector3f newC = c + ( (AngleAxisf(angles[j*2+1], ax0)
                                * AngleAxisf(angles[j*2+0] * (l==1 ? 0.35 : 0.5), ax1)) * ax0)
                                * (mRadii[i] + radius*0.8);
            mCenters.push_back(newC);
            mRadii.push_back(radius);
            parents.push_back(i);
          }
        }
        start = end;
      }
    }

    void draw()
    {
      int end = mCenters.size();
      glEnable(GL_NORMALIZE);
      for (int i=0; i<end; ++i)
      {
        Affine3f t = Translation3f(mCenters[i]) * Scaling(mRadii[i]);
        gpu.pushMatrix(GL_MODELVIEW);
        gpu.multMatrix(t.matrix(),GL_MODELVIEW);
        mIcoSphere.draw(2);
        gpu.popMatrix(GL_MODELVIEW);
      }
      glDisable(GL_NORMALIZE);
    }
  protected:
    std::vector<Vector3f> mCenters;
    std::vector<float> mRadii;
    IcoSphere mIcoSphere;
};


// generic linear interpolation method
template<typename T> T lerp(float t, const T& a, const T& b)
{
  return a*(1-t) + b*t;
}

// quaternion slerp
template<> Quaternionf lerp(float t, const Quaternionf& a, const Quaternionf& b)
{ return a.slerp(t,b); }

// linear interpolation of a frame using the type OrientationType
// to perform the interpolation of the orientations
template<typename OrientationType>
inline static Frame lerpFrame(float alpha, const Frame& a, const Frame& b)
{
  return Frame(lerp(alpha,a.position,b.position),
               Quaternionf(lerp(alpha,OrientationType(a.orientation),OrientationType(b.orientation))));
}

template<typename _Scalar> class EulerAngles
{
public:
  enum { Dim = 3 };
  typedef _Scalar Scalar;
  typedef Matrix<Scalar,3,3> Matrix3;
  typedef Matrix<Scalar,3,1> Vector3;
  typedef Quaternion<Scalar> QuaternionType;

protected:

  Vector3 m_angles;

public:

  EulerAngles() {}
  inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {}
  inline EulerAngles(const QuaternionType& q) { *this = q; }

  const Vector3& coeffs() const { return m_angles; }
  Vector3& coeffs() { return m_angles; }

  EulerAngles& operator=(const QuaternionType& q)
  {
    Matrix3 m = q.toRotationMatrix();
    return *this = m;
  }

  EulerAngles& operator=(const Matrix3& m)
  {
    // mat =  cy*cz          -cy*sz           sy
    //        cz*sx*sy+cx*sz  cx*cz-sx*sy*sz -cy*sx
    //       -cx*cz*sy+sx*sz  cz*sx+cx*sy*sz  cx*cy
    m_angles.coeffRef(1) = std::asin(m.coeff(0,2));
    m_angles.coeffRef(0) = std::atan2(-m.coeff(1,2),m.coeff(2,2));
    m_angles.coeffRef(2) = std::atan2(-m.coeff(0,1),m.coeff(0,0));
    return *this;
  }

  Matrix3 toRotationMatrix(void) const
  {
    Vector3 c = m_angles.array().cos();
    Vector3 s = m_angles.array().sin();
    Matrix3 res;
    res <<  c.y()*c.z(),                    -c.y()*s.z(),                   s.y(),
            c.z()*s.x()*s.y()+c.x()*s.z(),  c.x()*c.z()-s.x()*s.y()*s.z(),  -c.y()*s.x(),
            -c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(),  c.x()*c.y();
    return res;
  }

  operator QuaternionType() { return QuaternionType(toRotationMatrix()); }
};

// Euler angles slerp
template<> EulerAngles<float> lerp(float t, const EulerAngles<float>& a, const EulerAngles<float>& b)
{
  EulerAngles<float> res;
  res.coeffs() = lerp(t, a.coeffs(), b.coeffs());
  return res;
}


RenderingWidget::RenderingWidget()
{
  mAnimate = false;
  mCurrentTrackingMode = TM_NO_TRACK;
  mNavMode = NavTurnAround;
  mLerpMode = LerpQuaternion;
  mRotationMode = RotationStable;
  mTrackball.setCamera(&mCamera);

  // required to capture key press events
  setFocusPolicy(Qt::ClickFocus);
}

void RenderingWidget::grabFrame(void)
{
    // ask user for a time
    bool ok = false;
    double t = 0;
    if (!m_timeline.empty())
      t = (--m_timeline.end())->first + 1.;
    t = QInputDialog::getDouble(this, "Eigen's RenderingWidget", "time value: ",
      t, 0, 1e3, 1, &ok);
    if (ok)
    {
      Frame aux;
      aux.orientation = mCamera.viewMatrix().linear();
      aux.position = mCamera.viewMatrix().translation();
      m_timeline[t] = aux;
    }
}

void RenderingWidget::drawScene()
{
  static FancySpheres sFancySpheres;
  float length = 50;
  gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitX(), Color(1,0,0,1));
  gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitY(), Color(0,1,0,1));
  gpu.drawVector(Vector3f::Zero(), length*Vector3f::UnitZ(), Color(0,0,1,1));

  // draw the fractal object
  float sqrt3 = internal::sqrt(3.);
  glLightfv(GL_LIGHT0, GL_AMBIENT, Vector4f(0.5,0.5,0.5,1).data());
  glLightfv(GL_LIGHT0, GL_DIFFUSE, Vector4f(0.5,1,0.5,1).data());
  glLightfv(GL_LIGHT0, GL_SPECULAR, Vector4f(1,1,1,1).data());
  glLightfv(GL_LIGHT0, GL_POSITION, Vector4f(-sqrt3,-sqrt3,sqrt3,0).data());

  glLightfv(GL_LIGHT1, GL_AMBIENT, Vector4f(0,0,0,1).data());
  glLightfv(GL_LIGHT1, GL_DIFFUSE, Vector4f(1,0.5,0.5,1).data());
  glLightfv(GL_LIGHT1, GL_SPECULAR, Vector4f(1,1,1,1).data());
  glLightfv(GL_LIGHT1, GL_POSITION, Vector4f(-sqrt3,sqrt3,-sqrt3,0).data());

  glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT, Vector4f(0.7, 0.7, 0.7, 1).data());
  glMaterialfv(GL_FRONT_AND_BACK, GL_DIFFUSE, Vector4f(0.8, 0.75, 0.6, 1).data());
  glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, Vector4f(1, 1, 1, 1).data());
  glMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, 64);

  glEnable(GL_LIGHTING);
  glEnable(GL_LIGHT0);
  glEnable(GL_LIGHT1);

  sFancySpheres.draw();
  glVertexPointer(3, GL_FLOAT, 0, mVertices[0].data());
  glNormalPointer(GL_FLOAT, 0, mNormals[0].data());
  glEnableClientState(GL_VERTEX_ARRAY);
  glEnableClientState(GL_NORMAL_ARRAY);
  glDrawArrays(GL_TRIANGLES, 0, mVertices.size());
  glDisableClientState(GL_VERTEX_ARRAY);
  glDisableClientState(GL_NORMAL_ARRAY);

  glDisable(GL_LIGHTING);
}

void RenderingWidget::animate()
{
  m_alpha += double(m_timer.interval()) * 1e-3;

  TimeLine::const_iterator hi = m_timeline.upper_bound(m_alpha);
  TimeLine::const_iterator lo = hi;
  --lo;

  Frame currentFrame;

  if(hi==m_timeline.end())
  {
    // end
    currentFrame = lo->second;
    stopAnimation();
  }
  else if(hi==m_timeline.begin())
  {
    // start
    currentFrame = hi->second;
  }
  else
  {
    float s = (m_alpha - lo->first)/(hi->first - lo->first);
    if (mLerpMode==LerpEulerAngles)
      currentFrame = ::lerpFrame<EulerAngles<float> >(s, lo->second, hi->second);
    else if (mLerpMode==LerpQuaternion)
      currentFrame = ::lerpFrame<Eigen::Quaternionf>(s, lo->second, hi->second);
    else
    {
      std::cerr << "Invalid rotation interpolation mode (abort)\n";
      exit(2);
    }
    currentFrame.orientation.coeffs().normalize();
  }

  currentFrame.orientation = currentFrame.orientation.inverse();
  currentFrame.position = - (currentFrame.orientation * currentFrame.position);
  mCamera.setFrame(currentFrame);

  updateGL();
}

void RenderingWidget::keyPressEvent(QKeyEvent * e)
{
    switch(e->key())
    {
      case Qt::Key_Up:
        mCamera.zoom(2);
        break;
      case Qt::Key_Down:
        mCamera.zoom(-2);
        break;
      // add a frame
      case Qt::Key_G:
        grabFrame();
        break;
      // clear the time line
      case Qt::Key_C:
        m_timeline.clear();
        break;
      // move the camera to initial pos
      case Qt::Key_R:
        resetCamera();
        break;
      // start/stop the animation
      case Qt::Key_A:
        if (mAnimate)
        {
          stopAnimation();
        }
        else
        {
          m_alpha = 0;
          connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
          m_timer.start(1000/30);
          mAnimate = true;
        }
        break;
      default:
        break;
    }

    updateGL();
}

void RenderingWidget::stopAnimation()
{
  disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
  m_timer.stop();
  mAnimate = false;
  m_alpha = 0;
}

void RenderingWidget::mousePressEvent(QMouseEvent* e)
{
  mMouseCoords = Vector2i(e->pos().x(), e->pos().y());
  bool fly = (mNavMode==NavFly) || (e->modifiers()&Qt::ControlModifier);
  switch(e->button())
  {
    case Qt::LeftButton:
      if(fly)
      {
        mCurrentTrackingMode = TM_LOCAL_ROTATE;
        mTrackball.start(Trackball::Local);
      }
      else
      {
        mCurrentTrackingMode = TM_ROTATE_AROUND;
        mTrackball.start(Trackball::Around);
      }
      mTrackball.track(mMouseCoords);
      break;
    case Qt::MidButton:
      if(fly)
        mCurrentTrackingMode = TM_FLY_Z;
      else
        mCurrentTrackingMode = TM_ZOOM;
      break;
    case Qt::RightButton:
        mCurrentTrackingMode = TM_FLY_PAN;
      break;
    default:
      break;
  }
}
void RenderingWidget::mouseReleaseEvent(QMouseEvent*)
{
    mCurrentTrackingMode = TM_NO_TRACK;
    updateGL();
}

void RenderingWidget::mouseMoveEvent(QMouseEvent* e)
{
    // tracking
    if(mCurrentTrackingMode != TM_NO_TRACK)
    {
        float dx =   float(e->x() - mMouseCoords.x()) / float(mCamera.vpWidth());
        float dy = - float(e->y() - mMouseCoords.y()) / float(mCamera.vpHeight());

        // speedup the transformations
        if(e->modifiers() & Qt::ShiftModifier)
        {
          dx *= 10.;
          dy *= 10.;
        }

        switch(mCurrentTrackingMode)
        {
          case TM_ROTATE_AROUND:
          case TM_LOCAL_ROTATE:
            if (mRotationMode==RotationStable)
            {
              // use the stable trackball implementation mapping
              // the 2D coordinates to 3D points on a sphere.
              mTrackball.track(Vector2i(e->pos().x(), e->pos().y()));
            }
            else
            {
              // standard approach mapping the x and y displacements as rotations
              // around the camera's X and Y axes.
              Quaternionf q = AngleAxisf( dx*M_PI, Vector3f::UnitY())
                            * AngleAxisf(-dy*M_PI, Vector3f::UnitX());
              if (mCurrentTrackingMode==TM_LOCAL_ROTATE)
                mCamera.localRotate(q);
              else
                mCamera.rotateAroundTarget(q);
            }
            break;
          case TM_ZOOM :
            mCamera.zoom(dy*100);
            break;
          case TM_FLY_Z :
            mCamera.localTranslate(Vector3f(0, 0, -dy*200));
            break;
          case TM_FLY_PAN :
            mCamera.localTranslate(Vector3f(dx*200, dy*200, 0));
            break;
          default:
            break;
        }

        updateGL();
    }

    mMouseCoords = Vector2i(e->pos().x(), e->pos().y());
}

void RenderingWidget::paintGL()
{
  glEnable(GL_DEPTH_TEST);
  glDisable(GL_CULL_FACE);
  glPolygonMode(GL_FRONT_AND_BACK,GL_FILL);
  glDisable(GL_COLOR_MATERIAL);
  glDisable(GL_BLEND);
  glDisable(GL_ALPHA_TEST);
  glDisable(GL_TEXTURE_1D);
  glDisable(GL_TEXTURE_2D);
  glDisable(GL_TEXTURE_3D);

  // Clear buffers
  glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

  mCamera.activateGL();

  drawScene();
}

void RenderingWidget::initializeGL()
{
  glClearColor(1., 1., 1., 0.);
  glLightModeli(GL_LIGHT_MODEL_LOCAL_VIEWER, 1);
  glDepthMask(GL_TRUE);
  glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

  mCamera.setPosition(Vector3f(-200, -200, -200));
  mCamera.setTarget(Vector3f(0, 0, 0));
  mInitFrame.orientation = mCamera.orientation().inverse();
  mInitFrame.position = mCamera.viewMatrix().translation();
}

void RenderingWidget::resizeGL(int width, int height)
{
    mCamera.setViewport(width,height);
}

void RenderingWidget::setNavMode(int m)
{
  mNavMode = NavMode(m);
}

void RenderingWidget::setLerpMode(int m)
{
  mLerpMode = LerpMode(m);
}

void RenderingWidget::setRotationMode(int m)
{
  mRotationMode = RotationMode(m);
}

void RenderingWidget::resetCamera()
{
  if (mAnimate)
    stopAnimation();
  m_timeline.clear();
  Frame aux0 = mCamera.frame();
  aux0.orientation = aux0.orientation.inverse();
  aux0.position = mCamera.viewMatrix().translation();
  m_timeline[0] = aux0;

  Vector3f currentTarget = mCamera.target();
  mCamera.setTarget(Vector3f::Zero());

  // compute the rotation duration to move the camera to the target
  Frame aux1 = mCamera.frame();
  aux1.orientation = aux1.orientation.inverse();
  aux1.position = mCamera.viewMatrix().translation();
  float duration = aux0.orientation.angularDistance(aux1.orientation) * 0.9;
  if (duration<0.1) duration = 0.1;

  // put the camera at that time step:
  aux1 = aux0.lerp(duration/2,mInitFrame);
  // and make it look at the target again
  aux1.orientation = aux1.orientation.inverse();
  aux1.position = - (aux1.orientation * aux1.position);
  mCamera.setFrame(aux1);
  mCamera.setTarget(Vector3f::Zero());

  // add this camera keyframe
  aux1.orientation = aux1.orientation.inverse();
  aux1.position = mCamera.viewMatrix().translation();
  m_timeline[duration] = aux1;

  m_timeline[2] = mInitFrame;
  m_alpha = 0;
  animate();
  connect(&m_timer, SIGNAL(timeout()), this, SLOT(animate()));
  m_timer.start(1000/30);
  mAnimate = true;
}

QWidget* RenderingWidget::createNavigationControlWidget()
{
  QWidget* panel = new QWidget();
  QVBoxLayout* layout = new QVBoxLayout();

  {
    QPushButton* but = new QPushButton("reset");
    but->setToolTip("move the camera to initial position (with animation)");
    layout->addWidget(but);
    connect(but, SIGNAL(clicked()), this, SLOT(resetCamera()));
  }
  {
    // navigation mode
    QGroupBox* box = new QGroupBox("navigation mode");
    QVBoxLayout* boxLayout = new QVBoxLayout;
    QButtonGroup* group = new QButtonGroup(panel);
    QRadioButton* but;
    but = new QRadioButton("turn around");
    but->setToolTip("look around an object");
    group->addButton(but, NavTurnAround);
    boxLayout->addWidget(but);
    but = new QRadioButton("fly");
    but->setToolTip("free navigation like a spaceship\n(this mode can also be enabled pressing the \"shift\" key)");
    group->addButton(but, NavFly);
    boxLayout->addWidget(but);
    group->button(mNavMode)->setChecked(true);
    connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setNavMode(int)));
    box->setLayout(boxLayout);
    layout->addWidget(box);
  }
  {
    // track ball, rotation mode
    QGroupBox* box = new QGroupBox("rotation mode");
    QVBoxLayout* boxLayout = new QVBoxLayout;
    QButtonGroup* group = new QButtonGroup(panel);
    QRadioButton* but;
    but = new QRadioButton("stable trackball");
    group->addButton(but, RotationStable);
    boxLayout->addWidget(but);
    but->setToolTip("use the stable trackball implementation mapping\nthe 2D coordinates to 3D points on a sphere");
    but = new QRadioButton("standard rotation");
    group->addButton(but, RotationStandard);
    boxLayout->addWidget(but);
    but->setToolTip("standard approach mapping the x and y displacements\nas rotations around the camera's X and Y axes");
    group->button(mRotationMode)->setChecked(true);
    connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setRotationMode(int)));
    box->setLayout(boxLayout);
    layout->addWidget(box);
  }
  {
    // interpolation mode
    QGroupBox* box = new QGroupBox("spherical interpolation");
    QVBoxLayout* boxLayout = new QVBoxLayout;
    QButtonGroup* group = new QButtonGroup(panel);
    QRadioButton* but;
    but = new QRadioButton("quaternion slerp");
    group->addButton(but, LerpQuaternion);
    boxLayout->addWidget(but);
    but->setToolTip("use quaternion spherical interpolation\nto interpolate orientations");
    but = new QRadioButton("euler angles");
    group->addButton(but, LerpEulerAngles);
    boxLayout->addWidget(but);
    but->setToolTip("use Euler angles to interpolate orientations");
    group->button(mNavMode)->setChecked(true);
    connect(group, SIGNAL(buttonClicked(int)), this, SLOT(setLerpMode(int)));
    box->setLayout(boxLayout);
    layout->addWidget(box);
  }
  layout->addItem(new QSpacerItem(0,0,QSizePolicy::Minimum,QSizePolicy::Expanding));
  panel->setLayout(layout);
  return panel;
}

QuaternionDemo::QuaternionDemo()
{
  mRenderingWidget = new RenderingWidget();
  setCentralWidget(mRenderingWidget);

  QDockWidget* panel = new QDockWidget("navigation", this);
  panel->setAllowedAreas((QFlags<Qt::DockWidgetArea>)(Qt::RightDockWidgetArea | Qt::LeftDockWidgetArea));
  addDockWidget(Qt::RightDockWidgetArea, panel);
  panel->setWidget(mRenderingWidget->createNavigationControlWidget());
}

int main(int argc, char *argv[])
{
  std::cout << "Navigation:\n";
  std::cout << "  left button:           rotate around the target\n";
  std::cout << "  middle button:         zoom\n";
  std::cout << "  left button + ctrl     quake rotate (rotate around camera position)\n";
  std::cout << "  middle button + ctrl   walk (progress along camera's z direction)\n";
  std::cout << "  left button:           pan (translate in the XY camera's plane)\n\n";
  std::cout << "R : move the camera to initial position\n";
  std::cout << "A : start/stop animation\n";
  std::cout << "C : clear the animation\n";
  std::cout << "G : add a key frame\n";

  QApplication app(argc, argv);
  QuaternionDemo demo;
  demo.resize(600,500);
  demo.show();
  return app.exec();
}

#include "quaternion_demo.moc"