cholesky.cpp 13.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_NO_ASSERTION_CHECKING
#define EIGEN_NO_ASSERTION_CHECKING
#endif

static int nb_temporaries;

#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { if(size!=0) nb_temporaries++; }

#include "main.h"
#include <Eigen/Cholesky>
#include <Eigen/QR>

#define VERIFY_EVALUATION_COUNT(XPR,N) {\
    nb_temporaries = 0; \
    XPR; \
    if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \
    VERIFY( (#XPR) && nb_temporaries==N ); \
  }

template<typename MatrixType,template <typename,int> class CholType> void test_chol_update(const MatrixType& symm)
{
  typedef typename MatrixType::Scalar Scalar;
  typedef typename MatrixType::RealScalar RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  MatrixType symmLo = symm.template triangularView<Lower>();
  MatrixType symmUp = symm.template triangularView<Upper>();
  MatrixType symmCpy = symm;

  CholType<MatrixType,Lower> chollo(symmLo);
  CholType<MatrixType,Upper> cholup(symmUp);

  for (int k=0; k<10; ++k)
  {
    VectorType vec = VectorType::Random(symm.rows());
    RealScalar sigma = internal::random<RealScalar>();
    symmCpy += sigma * vec * vec.adjoint();

    // we are doing some downdates, so it might be the case that the matrix is not SPD anymore
    CholType<MatrixType,Lower> chol(symmCpy);
    if(chol.info()!=Success)
      break;

    chollo.rankUpdate(vec, sigma);
    VERIFY_IS_APPROX(symmCpy, chollo.reconstructedMatrix());

    cholup.rankUpdate(vec, sigma);
    VERIFY_IS_APPROX(symmCpy, cholup.reconstructedMatrix());
  }
}

template<typename MatrixType> void cholesky(const MatrixType& m)
{
  typedef typename MatrixType::Index Index;
  /* this test covers the following files:
     LLT.h LDLT.h
  */
  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> SquareMatrixType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  MatrixType a0 = MatrixType::Random(rows,cols);
  VectorType vecB = VectorType::Random(rows), vecX(rows);
  MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
  SquareMatrixType symm =  a0 * a0.adjoint();
  // let's make sure the matrix is not singular or near singular
  for (int k=0; k<3; ++k)
  {
    MatrixType a1 = MatrixType::Random(rows,cols);
    symm += a1 * a1.adjoint();
  }

  // to test if really Cholesky only uses the upper triangular part, uncomment the following
  // FIXME: currently that fails !!
  //symm.template part<StrictlyLower>().setZero();

  {
    SquareMatrixType symmUp = symm.template triangularView<Upper>();
    SquareMatrixType symmLo = symm.template triangularView<Lower>();
    
    LLT<SquareMatrixType,Lower> chollo(symmLo);
    VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
    vecX = chollo.solve(vecB);
    VERIFY_IS_APPROX(symm * vecX, vecB);
    matX = chollo.solve(matB);
    VERIFY_IS_APPROX(symm * matX, matB);

    // test the upper mode
    LLT<SquareMatrixType,Upper> cholup(symmUp);
    VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix());
    vecX = cholup.solve(vecB);
    VERIFY_IS_APPROX(symm * vecX, vecB);
    matX = cholup.solve(matB);
    VERIFY_IS_APPROX(symm * matX, matB);

    MatrixType neg = -symmLo;
    chollo.compute(neg);
    VERIFY(chollo.info()==NumericalIssue);

    VERIFY_IS_APPROX(MatrixType(chollo.matrixL().transpose().conjugate()), MatrixType(chollo.matrixU()));
    VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL()));
    VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU()));
    VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL()));
    
    // test some special use cases of SelfCwiseBinaryOp:
    MatrixType m1 = MatrixType::Random(rows,cols), m2(rows,cols);
    m2 = m1;
    m2 += symmLo.template selfadjointView<Lower>().llt().solve(matB);
    VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
    m2 = m1;
    m2 -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
    VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
    m2 = m1;
    m2.noalias() += symmLo.template selfadjointView<Lower>().llt().solve(matB);
    VERIFY_IS_APPROX(m2, m1 + symmLo.template selfadjointView<Lower>().llt().solve(matB));
    m2 = m1;
    m2.noalias() -= symmLo.template selfadjointView<Lower>().llt().solve(matB);
    VERIFY_IS_APPROX(m2, m1 - symmLo.template selfadjointView<Lower>().llt().solve(matB));
  }

  // LDLT
  {
    int sign = internal::random<int>()%2 ? 1 : -1;

    if(sign == -1)
    {
      symm = -symm; // test a negative matrix
    }

    SquareMatrixType symmUp = symm.template triangularView<Upper>();
    SquareMatrixType symmLo = symm.template triangularView<Lower>();

    LDLT<SquareMatrixType,Lower> ldltlo(symmLo);
    VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
    vecX = ldltlo.solve(vecB);
    VERIFY_IS_APPROX(symm * vecX, vecB);
    matX = ldltlo.solve(matB);
    VERIFY_IS_APPROX(symm * matX, matB);

    LDLT<SquareMatrixType,Upper> ldltup(symmUp);
    VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix());
    vecX = ldltup.solve(vecB);
    VERIFY_IS_APPROX(symm * vecX, vecB);
    matX = ldltup.solve(matB);
    VERIFY_IS_APPROX(symm * matX, matB);

    VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU()));
    VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL()));
    VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU()));
    VERIFY_IS_APPROX(MatrixType(ldltup.matrixU().transpose().conjugate()), MatrixType(ldltup.matrixL()));

    if(MatrixType::RowsAtCompileTime==Dynamic)
    {
      // note : each inplace permutation requires a small temporary vector (mask)

      // check inplace solve
      matX = matB;
      VERIFY_EVALUATION_COUNT(matX = ldltlo.solve(matX), 0);
      VERIFY_IS_APPROX(matX, ldltlo.solve(matB).eval());


      matX = matB;
      VERIFY_EVALUATION_COUNT(matX = ldltup.solve(matX), 0);
      VERIFY_IS_APPROX(matX, ldltup.solve(matB).eval());
    }

    // restore
    if(sign == -1)
      symm = -symm;

    // check matrices coming from linear constraints with Lagrange multipliers
    if(rows>=3)
    {
      SquareMatrixType A = symm;
      int c = internal::random<int>(0,rows-2);
      A.bottomRightCorner(c,c).setZero();
      // Make sure a solution exists:
      vecX.setRandom();
      vecB = A * vecX;
      vecX.setZero();
      ldltlo.compute(A);
      VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
      vecX = ldltlo.solve(vecB);
      VERIFY_IS_APPROX(A * vecX, vecB);
    }
    
    // check non-full rank matrices
    if(rows>=3)
    {
      int r = internal::random<int>(1,rows-1);
      Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,r);
      SquareMatrixType A = a * a.adjoint();
      // Make sure a solution exists:
      vecX.setRandom();
      vecB = A * vecX;
      vecX.setZero();
      ldltlo.compute(A);
      VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
      vecX = ldltlo.solve(vecB);
      VERIFY_IS_APPROX(A * vecX, vecB);
    }
    
    // check matrices with a wide spectrum
    if(rows>=3)
    {
      RealScalar s = (std::min)(16,std::numeric_limits<RealScalar>::max_exponent10/8);
      Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,rows);
      Matrix<RealScalar,Dynamic,1> d =  Matrix<RealScalar,Dynamic,1>::Random(rows);
      for(int k=0; k<rows; ++k)
        d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s));
      SquareMatrixType A = a * d.asDiagonal() * a.adjoint();
      // Make sure a solution exists:
      vecX.setRandom();
      vecB = A * vecX;
      vecX.setZero();
      ldltlo.compute(A);
      VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix());
      vecX = ldltlo.solve(vecB);
      VERIFY_IS_APPROX(A * vecX, vecB);
    }
  }

  // update/downdate
  CALL_SUBTEST(( test_chol_update<SquareMatrixType,LLT>(symm)  ));
  CALL_SUBTEST(( test_chol_update<SquareMatrixType,LDLT>(symm) ));
}

template<typename MatrixType> void cholesky_cplx(const MatrixType& m)
{
  // classic test
  cholesky(m);

  // test mixing real/scalar types

  typedef typename MatrixType::Index Index;

  Index rows = m.rows();
  Index cols = m.cols();

  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  typedef Matrix<RealScalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> RealMatrixType;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  RealMatrixType a0 = RealMatrixType::Random(rows,cols);
  VectorType vecB = VectorType::Random(rows), vecX(rows);
  MatrixType matB = MatrixType::Random(rows,cols), matX(rows,cols);
  RealMatrixType symm =  a0 * a0.adjoint();
  // let's make sure the matrix is not singular or near singular
  for (int k=0; k<3; ++k)
  {
    RealMatrixType a1 = RealMatrixType::Random(rows,cols);
    symm += a1 * a1.adjoint();
  }

  {
    RealMatrixType symmLo = symm.template triangularView<Lower>();

    LLT<RealMatrixType,Lower> chollo(symmLo);
    VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix());
    vecX = chollo.solve(vecB);
    VERIFY_IS_APPROX(symm * vecX, vecB);
//     matX = chollo.solve(matB);
//     VERIFY_IS_APPROX(symm * matX, matB);
  }

  // LDLT
  {
    int sign = internal::random<int>()%2 ? 1 : -1;

    if(sign == -1)
    {
      symm = -symm; // test a negative matrix
    }

    RealMatrixType symmLo = symm.template triangularView<Lower>();

    LDLT<RealMatrixType,Lower> ldltlo(symmLo);
    VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix());
    vecX = ldltlo.solve(vecB);
    VERIFY_IS_APPROX(symm * vecX, vecB);
//     matX = ldltlo.solve(matB);
//     VERIFY_IS_APPROX(symm * matX, matB);
  }
}

// regression test for bug 241
template<typename MatrixType> void cholesky_bug241(const MatrixType& m)
{
  eigen_assert(m.rows() == 2 && m.cols() == 2);

  typedef typename MatrixType::Scalar Scalar;
  typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  MatrixType matA;
  matA << 1, 1, 1, 1;
  VectorType vecB;
  vecB << 1, 1;
  VectorType vecX = matA.ldlt().solve(vecB);
  VERIFY_IS_APPROX(matA * vecX, vecB);
}

// LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal.
// This test checks that LDLT reports correctly that matrix is indefinite. 
// See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736
template<typename MatrixType> void cholesky_definiteness(const MatrixType& m)
{
  eigen_assert(m.rows() == 2 && m.cols() == 2);
  MatrixType mat;
  LDLT<MatrixType> ldlt(2);
  
  {
    mat << 1, 0, 0, -1;
    ldlt.compute(mat);
    VERIFY(!ldlt.isNegative());
    VERIFY(!ldlt.isPositive());
  }
  {
    mat << 1, 2, 2, 1;
    ldlt.compute(mat);
    VERIFY(!ldlt.isNegative());
    VERIFY(!ldlt.isPositive());
  }
  {
    mat << 0, 0, 0, 0;
    ldlt.compute(mat);
    VERIFY(ldlt.isNegative());
    VERIFY(ldlt.isPositive());
  }
  {
    mat << 0, 0, 0, 1;
    ldlt.compute(mat);
    VERIFY(!ldlt.isNegative());
    VERIFY(ldlt.isPositive());
  }
  {
    mat << -1, 0, 0, 0;
    ldlt.compute(mat);
    VERIFY(ldlt.isNegative());
    VERIFY(!ldlt.isPositive());
  }
}

template<typename MatrixType> void cholesky_verify_assert()
{
  MatrixType tmp;

  LLT<MatrixType> llt;
  VERIFY_RAISES_ASSERT(llt.matrixL())
  VERIFY_RAISES_ASSERT(llt.matrixU())
  VERIFY_RAISES_ASSERT(llt.solve(tmp))
  VERIFY_RAISES_ASSERT(llt.solveInPlace(&tmp))

  LDLT<MatrixType> ldlt;
  VERIFY_RAISES_ASSERT(ldlt.matrixL())
  VERIFY_RAISES_ASSERT(ldlt.permutationP())
  VERIFY_RAISES_ASSERT(ldlt.vectorD())
  VERIFY_RAISES_ASSERT(ldlt.isPositive())
  VERIFY_RAISES_ASSERT(ldlt.isNegative())
  VERIFY_RAISES_ASSERT(ldlt.solve(tmp))
  VERIFY_RAISES_ASSERT(ldlt.solveInPlace(&tmp))
}

void test_cholesky()
{
  int s = 0;
  for(int i = 0; i < g_repeat; i++) {
    CALL_SUBTEST_1( cholesky(Matrix<double,1,1>()) );
    CALL_SUBTEST_3( cholesky(Matrix2d()) );
    CALL_SUBTEST_3( cholesky_bug241(Matrix2d()) );
    CALL_SUBTEST_3( cholesky_definiteness(Matrix2d()) );
    CALL_SUBTEST_4( cholesky(Matrix3f()) );
    CALL_SUBTEST_5( cholesky(Matrix4d()) );
    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
    CALL_SUBTEST_2( cholesky(MatrixXd(s,s)) );
    s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2);
    CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) );
  }

  CALL_SUBTEST_4( cholesky_verify_assert<Matrix3f>() );
  CALL_SUBTEST_7( cholesky_verify_assert<Matrix3d>() );
  CALL_SUBTEST_8( cholesky_verify_assert<MatrixXf>() );
  CALL_SUBTEST_2( cholesky_verify_assert<MatrixXd>() );

  // Test problem size constructors
  CALL_SUBTEST_9( LLT<MatrixXf>(10) );
  CALL_SUBTEST_9( LDLT<MatrixXf>(10) );
  
  TEST_SET_BUT_UNUSED_VARIABLE(s)
  TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries)
}