FFT 13.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. 
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_FFT_H
#define EIGEN_FFT_H

#include <complex>
#include <vector>
#include <map>
#include <Eigen/Core>


/**
  * \defgroup FFT_Module Fast Fourier Transform module
  *
  * \code
  * #include <unsupported/Eigen/FFT>
  * \endcode
  *
  * This module provides Fast Fourier transformation, with a configurable backend
  * implementation.
  *
  * The default implementation is based on kissfft. It is a small, free, and
  * reasonably efficient default.
  *
  * There are currently two implementation backend:
  *
  * - fftw (http://www.fftw.org) : faster, GPL -- incompatible with Eigen in LGPL form, bigger code size.
  * - MKL (http://en.wikipedia.org/wiki/Math_Kernel_Library) : fastest, commercial -- may be incompatible with Eigen in GPL form.
  *
  * \section FFTDesign Design
  *
  * The following design decisions were made concerning scaling and
  * half-spectrum for real FFT.
  *
  * The intent is to facilitate generic programming and ease migrating code
  * from  Matlab/octave.
  * We think the default behavior of Eigen/FFT should favor correctness and
  * generality over speed. Of course, the caller should be able to "opt-out" from this
  * behavior and get the speed increase if they want it.
  *
  * 1) %Scaling:
  * Other libraries (FFTW,IMKL,KISSFFT)  do not perform scaling, so there
  * is a constant gain incurred after the forward&inverse transforms , so 
  * IFFT(FFT(x)) = Kx;  this is done to avoid a vector-by-value multiply.  
  * The downside is that algorithms that worked correctly in Matlab/octave 
  * don't behave the same way once implemented in C++.
  *
  * How Eigen/FFT differs: invertible scaling is performed so IFFT( FFT(x) ) = x. 
  *
  * 2) Real FFT half-spectrum
  * Other libraries use only half the frequency spectrum (plus one extra 
  * sample for the Nyquist bin) for a real FFT, the other half is the 
  * conjugate-symmetric of the first half.  This saves them a copy and some 
  * memory.  The downside is the caller needs to have special logic for the 
  * number of bins in complex vs real.
  *
  * How Eigen/FFT differs: The full spectrum is returned from the forward 
  * transform.  This facilitates generic template programming by obviating 
  * separate specializations for real vs complex.  On the inverse
  * transform, only half the spectrum is actually used if the output type is real.
  */
 

#ifdef EIGEN_FFTW_DEFAULT
// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
#  include <fftw3.h>
#  include "src/FFT/ei_fftw_impl.h"
   namespace Eigen {
     //template <typename T> typedef struct internal::fftw_impl  default_fft_impl; this does not work
     template <typename T> struct default_fft_impl : public internal::fftw_impl<T> {};
   }
#elif defined EIGEN_MKL_DEFAULT
// TODO 
// intel Math Kernel Library: fastest, commercial -- may be incompatible with Eigen in GPL form
#  include "src/FFT/ei_imklfft_impl.h"
   namespace Eigen {
     template <typename T> struct default_fft_impl : public internal::imklfft_impl {};
   }
#else
// internal::kissfft_impl:  small, free, reasonably efficient default, derived from kissfft
//
# include "src/FFT/ei_kissfft_impl.h"
  namespace Eigen {
     template <typename T> 
       struct default_fft_impl : public internal::kissfft_impl<T> {};
  }
#endif

namespace Eigen {

 
// 
template<typename T_SrcMat,typename T_FftIfc> struct fft_fwd_proxy;
template<typename T_SrcMat,typename T_FftIfc> struct fft_inv_proxy;

namespace internal {
template<typename T_SrcMat,typename T_FftIfc>
struct traits< fft_fwd_proxy<T_SrcMat,T_FftIfc> >
{
  typedef typename T_SrcMat::PlainObject ReturnType;
};
template<typename T_SrcMat,typename T_FftIfc>
struct traits< fft_inv_proxy<T_SrcMat,T_FftIfc> >
{
  typedef typename T_SrcMat::PlainObject ReturnType;
};
}

template<typename T_SrcMat,typename T_FftIfc> 
struct fft_fwd_proxy
 : public ReturnByValue<fft_fwd_proxy<T_SrcMat,T_FftIfc> >
{
  typedef DenseIndex Index;

  fft_fwd_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}

  template<typename T_DestMat> void evalTo(T_DestMat& dst) const;

  Index rows() const { return m_src.rows(); }
  Index cols() const { return m_src.cols(); }
protected:
  const T_SrcMat & m_src;
  T_FftIfc & m_ifc;
  Index m_nfft;
private:
  fft_fwd_proxy& operator=(const fft_fwd_proxy&);
};

template<typename T_SrcMat,typename T_FftIfc> 
struct fft_inv_proxy
 : public ReturnByValue<fft_inv_proxy<T_SrcMat,T_FftIfc> >
{
  typedef DenseIndex Index;

  fft_inv_proxy(const T_SrcMat& src,T_FftIfc & fft, Index nfft) : m_src(src),m_ifc(fft), m_nfft(nfft) {}

  template<typename T_DestMat> void evalTo(T_DestMat& dst) const;

  Index rows() const { return m_src.rows(); }
  Index cols() const { return m_src.cols(); }
protected:
  const T_SrcMat & m_src;
  T_FftIfc & m_ifc;
  Index m_nfft;
private:
  fft_inv_proxy& operator=(const fft_inv_proxy&);
};


template <typename T_Scalar,
         typename T_Impl=default_fft_impl<T_Scalar> >
class FFT
{
  public:
    typedef T_Impl impl_type;
    typedef DenseIndex Index;
    typedef typename impl_type::Scalar Scalar;
    typedef typename impl_type::Complex Complex;

    enum Flag {
      Default=0, // goof proof
      Unscaled=1,
      HalfSpectrum=2,
      // SomeOtherSpeedOptimization=4
      Speedy=32767
    };

    FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }

    inline
    bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}

    inline
    void SetFlag(Flag f) { m_flag |= (int)f;}

    inline
    void ClearFlag(Flag f) { m_flag &= (~(int)f);}

    inline
    void fwd( Complex * dst, const Scalar * src, Index nfft)
    {
        m_impl.fwd(dst,src,static_cast<int>(nfft));
        if ( HasFlag(HalfSpectrum) == false)
          ReflectSpectrum(dst,nfft);
    }

    inline
    void fwd( Complex * dst, const Complex * src, Index nfft)
    {
        m_impl.fwd(dst,src,static_cast<int>(nfft));
    }

    /*
    inline 
    void fwd2(Complex * dst, const Complex * src, int n0,int n1)
    {
      m_impl.fwd2(dst,src,n0,n1);
    }
    */

    template <typename _Input>
    inline
    void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src) 
    {
      if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
        dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin
      else
        dst.resize(src.size());
      fwd(&dst[0],&src[0],src.size());
    }

    template<typename InputDerived, typename ComplexDerived>
    inline
    void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src, Index nfft=-1)
    {
      typedef typename ComplexDerived::Scalar dst_type;
      typedef typename InputDerived::Scalar src_type;
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
      EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
      EIGEN_STATIC_ASSERT((internal::is_same<dst_type, Complex>::value),
            YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
      EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
            THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)

      if (nfft<1)
        nfft = src.size();

      if ( NumTraits< src_type >::IsComplex == 0 && HasFlag(HalfSpectrum) )
        dst.derived().resize( (nfft>>1)+1);
      else
        dst.derived().resize(nfft);

      if ( src.innerStride() != 1 || src.size() < nfft ) {
        Matrix<src_type,1,Dynamic> tmp;
        if (src.size()<nfft) {
          tmp.setZero(nfft);
          tmp.block(0,0,src.size(),1 ) = src;
        }else{
          tmp = src;
        }
        fwd( &dst[0],&tmp[0],nfft );
      }else{
        fwd( &dst[0],&src[0],nfft );
      }
    }
 
    template<typename InputDerived>
    inline
    fft_fwd_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
    fwd( const MatrixBase<InputDerived> & src, Index nfft=-1)
    {
      return fft_fwd_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
    }

    template<typename InputDerived>
    inline
    fft_inv_proxy< MatrixBase<InputDerived>, FFT<T_Scalar,T_Impl> >
    inv( const MatrixBase<InputDerived> & src, Index nfft=-1)
    {
      return  fft_inv_proxy< MatrixBase<InputDerived> ,FFT<T_Scalar,T_Impl> >( src, *this,nfft );
    }

    inline
    void inv( Complex * dst, const Complex * src, Index nfft)
    {
      m_impl.inv( dst,src,static_cast<int>(nfft) );
      if ( HasFlag( Unscaled ) == false)
        scale(dst,Scalar(1./nfft),nfft); // scale the time series
    }

    inline
    void inv( Scalar * dst, const Complex * src, Index nfft)
    {
      m_impl.inv( dst,src,static_cast<int>(nfft) );
      if ( HasFlag( Unscaled ) == false)
        scale(dst,Scalar(1./nfft),nfft); // scale the time series
    }

    template<typename OutputDerived, typename ComplexDerived>
    inline
    void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, Index nfft=-1)
    {
      typedef typename ComplexDerived::Scalar src_type;
      typedef typename OutputDerived::Scalar dst_type;
      const bool realfft= (NumTraits<dst_type>::IsComplex == 0);
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
      EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
      EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,OutputDerived) // size at compile-time
      EIGEN_STATIC_ASSERT((internal::is_same<src_type, Complex>::value),
            YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
      EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
            THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)

      if (nfft<1) { //automatic FFT size determination
        if ( realfft && HasFlag(HalfSpectrum) ) 
          nfft = 2*(src.size()-1); //assume even fft size
        else
          nfft = src.size();
      }
      dst.derived().resize( nfft );

      // check for nfft that does not fit the input data size
      Index resize_input= ( realfft && HasFlag(HalfSpectrum) )
        ? ( (nfft/2+1) - src.size() )
        : ( nfft - src.size() );

      if ( src.innerStride() != 1 || resize_input ) {
        // if the vector is strided, then we need to copy it to a packed temporary
        Matrix<src_type,1,Dynamic> tmp;
        if ( resize_input ) {
          size_t ncopy = (std::min)(src.size(),src.size() + resize_input);
          tmp.setZero(src.size() + resize_input);
          if ( realfft && HasFlag(HalfSpectrum) ) {
            // pad at the Nyquist bin
            tmp.head(ncopy) = src.head(ncopy);
            tmp(ncopy-1) = real(tmp(ncopy-1)); // enforce real-only Nyquist bin
          }else{
            size_t nhead,ntail;
            nhead = 1+ncopy/2-1; // range  [0:pi)
            ntail = ncopy/2-1;   // range (-pi:0)
            tmp.head(nhead) = src.head(nhead);
            tmp.tail(ntail) = src.tail(ntail);
            if (resize_input<0) { //shrinking -- create the Nyquist bin as the average of the two bins that fold into it
              tmp(nhead) = ( src(nfft/2) + src( src.size() - nfft/2 ) )*src_type(.5);
            }else{ // expanding -- split the old Nyquist bin into two halves
              tmp(nhead) = src(nhead) * src_type(.5);
              tmp(tmp.size()-nhead) = tmp(nhead);
            }
          }
        }else{
          tmp = src;
        }
        inv( &dst[0],&tmp[0], nfft);
      }else{
        inv( &dst[0],&src[0], nfft);
      }
    }

    template <typename _Output>
    inline
    void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,Index nfft=-1)
    {
      if (nfft<1)
        nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
      dst.resize( nfft );
      inv( &dst[0],&src[0],nfft);
    }


    /*
    // TODO: multi-dimensional FFTs
    inline 
    void inv2(Complex * dst, const Complex * src, int n0,int n1)
    {
      m_impl.inv2(dst,src,n0,n1);
      if ( HasFlag( Unscaled ) == false)
          scale(dst,1./(n0*n1),n0*n1);
    }
  */

    inline
    impl_type & impl() {return m_impl;}
  private:

    template <typename T_Data>
    inline
    void scale(T_Data * x,Scalar s,Index nx)
    {
#if 1
      for (int k=0;k<nx;++k)
        *x++ *= s;
#else
      if ( ((ptrdiff_t)x) & 15 )
        Matrix<T_Data, Dynamic, 1>::Map(x,nx) *= s;
      else
        Matrix<T_Data, Dynamic, 1>::MapAligned(x,nx) *= s;
         //Matrix<T_Data, Dynamic, Dynamic>::Map(x,nx) * s;
#endif  
    }

    inline
    void ReflectSpectrum(Complex * freq, Index nfft)
    {
      // create the implicit right-half spectrum (conjugate-mirror of the left-half)
      Index nhbins=(nfft>>1)+1;
      for (Index k=nhbins;k < nfft; ++k )
        freq[k] = conj(freq[nfft-k]);
    }

    impl_type m_impl;
    int m_flag;
};

template<typename T_SrcMat,typename T_FftIfc> 
template<typename T_DestMat> inline 
void fft_fwd_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
{
    m_ifc.fwd( dst, m_src, m_nfft);
}

template<typename T_SrcMat,typename T_FftIfc> 
template<typename T_DestMat> inline 
void fft_inv_proxy<T_SrcMat,T_FftIfc>::evalTo(T_DestMat& dst) const
{
    m_ifc.inv( dst, m_src, m_nfft);
}

}
#endif
/* vim: set filetype=cpp et sw=2 ts=2 ai: */