ei_kissfft_impl.h 12 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

namespace Eigen { 

namespace internal {

  // This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
  // Copyright 2003-2009 Mark Borgerding

template <typename _Scalar>
struct kiss_cpx_fft
{
  typedef _Scalar Scalar;
  typedef std::complex<Scalar> Complex;
  std::vector<Complex> m_twiddles;
  std::vector<int> m_stageRadix;
  std::vector<int> m_stageRemainder;
  std::vector<Complex> m_scratchBuf;
  bool m_inverse;

  inline
    void make_twiddles(int nfft,bool inverse)
    {
      using std::acos;
      m_inverse = inverse;
      m_twiddles.resize(nfft);
      Scalar phinc =  (inverse?2:-2)* acos( (Scalar) -1)  / nfft;
      for (int i=0;i<nfft;++i)
        m_twiddles[i] = exp( Complex(0,i*phinc) );
    }

  void factorize(int nfft)
  {
    //start factoring out 4's, then 2's, then 3,5,7,9,...
    int n= nfft;
    int p=4;
    do {
      while (n % p) {
        switch (p) {
          case 4: p = 2; break;
          case 2: p = 3; break;
          default: p += 2; break;
        }
        if (p*p>n)
          p=n;// impossible to have a factor > sqrt(n)
      }
      n /= p;
      m_stageRadix.push_back(p);
      m_stageRemainder.push_back(n);
      if ( p > 5 )
        m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
    }while(n>1);
  }

  template <typename _Src>
    inline
    void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
    {
      int p = m_stageRadix[stage];
      int m = m_stageRemainder[stage];
      Complex * Fout_beg = xout;
      Complex * Fout_end = xout + p*m;

      if (m>1) {
        do{
          // recursive call:
          // DFT of size m*p performed by doing
          // p instances of smaller DFTs of size m, 
          // each one takes a decimated version of the input
          work(stage+1, xout , xin, fstride*p,in_stride);
          xin += fstride*in_stride;
        }while( (xout += m) != Fout_end );
      }else{
        do{
          *xout = *xin;
          xin += fstride*in_stride;
        }while(++xout != Fout_end );
      }
      xout=Fout_beg;

      // recombine the p smaller DFTs 
      switch (p) {
        case 2: bfly2(xout,fstride,m); break;
        case 3: bfly3(xout,fstride,m); break;
        case 4: bfly4(xout,fstride,m); break;
        case 5: bfly5(xout,fstride,m); break;
        default: bfly_generic(xout,fstride,m,p); break;
      }
    }

  inline
    void bfly2( Complex * Fout, const size_t fstride, int m)
    {
      for (int k=0;k<m;++k) {
        Complex t = Fout[m+k] * m_twiddles[k*fstride];
        Fout[m+k] = Fout[k] - t;
        Fout[k] += t;
      }
    }

  inline
    void bfly4( Complex * Fout, const size_t fstride, const size_t m)
    {
      Complex scratch[6];
      int negative_if_inverse = m_inverse * -2 +1;
      for (size_t k=0;k<m;++k) {
        scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
        scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
        scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
        scratch[5] = Fout[k] - scratch[1];

        Fout[k] += scratch[1];
        scratch[3] = scratch[0] + scratch[2];
        scratch[4] = scratch[0] - scratch[2];
        scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );

        Fout[k+2*m]  = Fout[k] - scratch[3];
        Fout[k] += scratch[3];
        Fout[k+m] = scratch[5] + scratch[4];
        Fout[k+3*m] = scratch[5] - scratch[4];
      }
    }

  inline
    void bfly3( Complex * Fout, const size_t fstride, const size_t m)
    {
      size_t k=m;
      const size_t m2 = 2*m;
      Complex *tw1,*tw2;
      Complex scratch[5];
      Complex epi3;
      epi3 = m_twiddles[fstride*m];

      tw1=tw2=&m_twiddles[0];

      do{
        scratch[1]=Fout[m] * *tw1;
        scratch[2]=Fout[m2] * *tw2;

        scratch[3]=scratch[1]+scratch[2];
        scratch[0]=scratch[1]-scratch[2];
        tw1 += fstride;
        tw2 += fstride*2;
        Fout[m] = Complex( Fout->real() - Scalar(.5)*scratch[3].real() , Fout->imag() - Scalar(.5)*scratch[3].imag() );
        scratch[0] *= epi3.imag();
        *Fout += scratch[3];
        Fout[m2] = Complex(  Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
        Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
        ++Fout;
      }while(--k);
    }

  inline
    void bfly5( Complex * Fout, const size_t fstride, const size_t m)
    {
      Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
      size_t u;
      Complex scratch[13];
      Complex * twiddles = &m_twiddles[0];
      Complex *tw;
      Complex ya,yb;
      ya = twiddles[fstride*m];
      yb = twiddles[fstride*2*m];

      Fout0=Fout;
      Fout1=Fout0+m;
      Fout2=Fout0+2*m;
      Fout3=Fout0+3*m;
      Fout4=Fout0+4*m;

      tw=twiddles;
      for ( u=0; u<m; ++u ) {
        scratch[0] = *Fout0;

        scratch[1]  = *Fout1 * tw[u*fstride];
        scratch[2]  = *Fout2 * tw[2*u*fstride];
        scratch[3]  = *Fout3 * tw[3*u*fstride];
        scratch[4]  = *Fout4 * tw[4*u*fstride];

        scratch[7] = scratch[1] + scratch[4];
        scratch[10] = scratch[1] - scratch[4];
        scratch[8] = scratch[2] + scratch[3];
        scratch[9] = scratch[2] - scratch[3];

        *Fout0 +=  scratch[7];
        *Fout0 +=  scratch[8];

        scratch[5] = scratch[0] + Complex(
            (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
            (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
            );

        scratch[6] = Complex(
            (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
            -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
            );

        *Fout1 = scratch[5] - scratch[6];
        *Fout4 = scratch[5] + scratch[6];

        scratch[11] = scratch[0] +
          Complex(
              (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
              (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
              );

        scratch[12] = Complex(
            -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
            (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
            );

        *Fout2=scratch[11]+scratch[12];
        *Fout3=scratch[11]-scratch[12];

        ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
      }
    }

  /* perform the butterfly for one stage of a mixed radix FFT */
  inline
    void bfly_generic(
        Complex * Fout,
        const size_t fstride,
        int m,
        int p
        )
    {
      int u,k,q1,q;
      Complex * twiddles = &m_twiddles[0];
      Complex t;
      int Norig = static_cast<int>(m_twiddles.size());
      Complex * scratchbuf = &m_scratchBuf[0];

      for ( u=0; u<m; ++u ) {
        k=u;
        for ( q1=0 ; q1<p ; ++q1 ) {
          scratchbuf[q1] = Fout[ k  ];
          k += m;
        }

        k=u;
        for ( q1=0 ; q1<p ; ++q1 ) {
          int twidx=0;
          Fout[ k ] = scratchbuf[0];
          for (q=1;q<p;++q ) {
            twidx += static_cast<int>(fstride) * k;
            if (twidx>=Norig) twidx-=Norig;
            t=scratchbuf[q] * twiddles[twidx];
            Fout[ k ] += t;
          }
          k += m;
        }
      }
    }
};

template <typename _Scalar>
struct kissfft_impl
{
  typedef _Scalar Scalar;
  typedef std::complex<Scalar> Complex;

  void clear() 
  {
    m_plans.clear();
    m_realTwiddles.clear();
  }

  inline
    void fwd( Complex * dst,const Complex *src,int nfft)
    {
      get_plan(nfft,false).work(0, dst, src, 1,1);
    }

  inline
    void fwd2( Complex * dst,const Complex *src,int n0,int n1)
    {
        EIGEN_UNUSED_VARIABLE(dst);
        EIGEN_UNUSED_VARIABLE(src);
        EIGEN_UNUSED_VARIABLE(n0);
        EIGEN_UNUSED_VARIABLE(n1);
    }

  inline
    void inv2( Complex * dst,const Complex *src,int n0,int n1)
    {
        EIGEN_UNUSED_VARIABLE(dst);
        EIGEN_UNUSED_VARIABLE(src);
        EIGEN_UNUSED_VARIABLE(n0);
        EIGEN_UNUSED_VARIABLE(n1);
    }

  // real-to-complex forward FFT
  // perform two FFTs of src even and src odd
  // then twiddle to recombine them into the half-spectrum format
  // then fill in the conjugate symmetric half
  inline
    void fwd( Complex * dst,const Scalar * src,int nfft) 
    {
      if ( nfft&3  ) {
        // use generic mode for odd
        m_tmpBuf1.resize(nfft);
        get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
        std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
      }else{
        int ncfft = nfft>>1;
        int ncfft2 = nfft>>2;
        Complex * rtw = real_twiddles(ncfft2);

        // use optimized mode for even real
        fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
        Complex dc = dst[0].real() +  dst[0].imag();
        Complex nyquist = dst[0].real() -  dst[0].imag();
        int k;
        for ( k=1;k <= ncfft2 ; ++k ) {
          Complex fpk = dst[k];
          Complex fpnk = conj(dst[ncfft-k]);
          Complex f1k = fpk + fpnk;
          Complex f2k = fpk - fpnk;
          Complex tw= f2k * rtw[k-1];
          dst[k] =  (f1k + tw) * Scalar(.5);
          dst[ncfft-k] =  conj(f1k -tw)*Scalar(.5);
        }
        dst[0] = dc;
        dst[ncfft] = nyquist;
      }
    }

  // inverse complex-to-complex
  inline
    void inv(Complex * dst,const Complex  *src,int nfft)
    {
      get_plan(nfft,true).work(0, dst, src, 1,1);
    }

  // half-complex to scalar
  inline
    void inv( Scalar * dst,const Complex * src,int nfft) 
    {
      if (nfft&3) {
        m_tmpBuf1.resize(nfft);
        m_tmpBuf2.resize(nfft);
        std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
        for (int k=1;k<(nfft>>1)+1;++k)
          m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
        inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
        for (int k=0;k<nfft;++k)
          dst[k] = m_tmpBuf2[k].real();
      }else{
        // optimized version for multiple of 4
        int ncfft = nfft>>1;
        int ncfft2 = nfft>>2;
        Complex * rtw = real_twiddles(ncfft2);
        m_tmpBuf1.resize(ncfft);
        m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
        for (int k = 1; k <= ncfft / 2; ++k) {
          Complex fk = src[k];
          Complex fnkc = conj(src[ncfft-k]);
          Complex fek = fk + fnkc;
          Complex tmp = fk - fnkc;
          Complex fok = tmp * conj(rtw[k-1]);
          m_tmpBuf1[k] = fek + fok;
          m_tmpBuf1[ncfft-k] = conj(fek - fok);
        }
        get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
      }
    }

  protected:
  typedef kiss_cpx_fft<Scalar> PlanData;
  typedef std::map<int,PlanData> PlanMap;

  PlanMap m_plans;
  std::map<int, std::vector<Complex> > m_realTwiddles;
  std::vector<Complex> m_tmpBuf1;
  std::vector<Complex> m_tmpBuf2;

  inline
    int PlanKey(int nfft, bool isinverse) const { return (nfft<<1) | int(isinverse); }

  inline
    PlanData & get_plan(int nfft, bool inverse)
    {
      // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
      PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
      if ( pd.m_twiddles.size() == 0 ) {
        pd.make_twiddles(nfft,inverse);
        pd.factorize(nfft);
      }
      return pd;
    }

  inline
    Complex * real_twiddles(int ncfft2)
    {
      using std::acos;
      std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
      if ( (int)twidref.size() != ncfft2 ) {
        twidref.resize(ncfft2);
        int ncfft= ncfft2<<1;
        Scalar pi =  acos( Scalar(-1) );
        for (int k=1;k<=ncfft2;++k) 
          twidref[k-1] = exp( Complex(0,-pi * (Scalar(k) / ncfft + Scalar(.5)) ) );
      }
      return &twidref[0];
    }
};

} // end namespace internal

} // end namespace Eigen

/* vim: set filetype=cpp et sw=2 ts=2 ai: */