DGMRES.h 18.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_DGMRES_H
#define EIGEN_DGMRES_H

#include <Eigen/Eigenvalues>

namespace Eigen { 
  
template< typename _MatrixType,
          typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
class DGMRES;

namespace internal {

template< typename _MatrixType, typename _Preconditioner>
struct traits<DGMRES<_MatrixType,_Preconditioner> >
{
  typedef _MatrixType MatrixType;
  typedef _Preconditioner Preconditioner;
};

/** \brief Computes a permutation vector to have a sorted sequence
  * \param vec The vector to reorder.
  * \param perm gives the sorted sequence on output. Must be initialized with 0..n-1
  * \param ncut Put  the ncut smallest elements at the end of the vector
  * WARNING This is an expensive sort, so should be used only 
  * for small size vectors
  * TODO Use modified QuickSplit or std::nth_element to get the smallest values 
  */
template <typename VectorType, typename IndexType>
void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::Scalar& ncut)
{
  eigen_assert(vec.size() == perm.size());
  typedef typename IndexType::Scalar Index; 
  typedef typename VectorType::Scalar Scalar; 
  bool flag; 
  for (Index k  = 0; k < ncut; k++)
  {
    flag = false;
    for (Index j = 0; j < vec.size()-1; j++)
    {
      if ( vec(perm(j)) < vec(perm(j+1)) )
      {
        std::swap(perm(j),perm(j+1)); 
        flag = true;
      }
      if (!flag) break; // The vector is in sorted order
    }
  }
}

}
/**
 * \ingroup IterativeLInearSolvers_Module
 * \brief A Restarted GMRES with deflation.
 * This class implements a modification of the GMRES solver for
 * sparse linear systems. The basis is built with modified 
 * Gram-Schmidt. At each restart, a few approximated eigenvectors
 * corresponding to the smallest eigenvalues are used to build a
 * preconditioner for the next cycle. This preconditioner 
 * for deflation can be combined with any other preconditioner, 
 * the IncompleteLUT for instance. The preconditioner is applied 
 * at right of the matrix and the combination is multiplicative.
 * 
 * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
 * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
 * Typical usage :
 * \code
 * SparseMatrix<double> A;
 * VectorXd x, b; 
 * //Fill A and b ...
 * DGMRES<SparseMatrix<double> > solver;
 * solver.set_restart(30); // Set restarting value
 * solver.setEigenv(1); // Set the number of eigenvalues to deflate
 * solver.compute(A);
 * x = solver.solve(b);
 * \endcode
 * 
 * References :
 * [1] D. NUENTSA WAKAM and F. PACULL, Memory Efficient Hybrid
 *  Algebraic Solvers for Linear Systems Arising from Compressible
 *  Flows, Computers and Fluids, In Press,
 *  http://dx.doi.org/10.1016/j.compfluid.2012.03.023   
 * [2] K. Burrage and J. Erhel, On the performance of various 
 * adaptive preconditioned GMRES strategies, 5(1998), 101-121.
 * [3] J. Erhel, K. Burrage and B. Pohl, Restarted GMRES 
 *  preconditioned by deflation,J. Computational and Applied
 *  Mathematics, 69(1996), 303-318. 

 * 
 */
template< typename _MatrixType, typename _Preconditioner>
class DGMRES : public IterativeSolverBase<DGMRES<_MatrixType,_Preconditioner> >
{
    typedef IterativeSolverBase<DGMRES> Base;
    using Base::mp_matrix;
    using Base::m_error;
    using Base::m_iterations;
    using Base::m_info;
    using Base::m_isInitialized;
    using Base::m_tolerance; 
  public:
    typedef _MatrixType MatrixType;
    typedef typename MatrixType::Scalar Scalar;
    typedef typename MatrixType::Index Index;
    typedef typename MatrixType::RealScalar RealScalar;
    typedef _Preconditioner Preconditioner;
    typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; 
    typedef Matrix<RealScalar,Dynamic,Dynamic> DenseRealMatrix; 
    typedef Matrix<Scalar,Dynamic,1> DenseVector;
    typedef Matrix<RealScalar,Dynamic,1> DenseRealVector; 
    typedef Matrix<std::complex<RealScalar>, Dynamic, 1> ComplexVector;
 
    
  /** Default constructor. */
  DGMRES() : Base(),m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}

  /** Initialize the solver with matrix \a A for further \c Ax=b solving.
    * 
    * This constructor is a shortcut for the default constructor followed
    * by a call to compute().
    * 
    * \warning this class stores a reference to the matrix A as well as some
    * precomputed values that depend on it. Therefore, if \a A is changed
    * this class becomes invalid. Call compute() to update it with the new
    * matrix A, or modify a copy of A.
    */
  template<typename MatrixDerived>
  explicit DGMRES(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_restart(30),m_neig(0),m_r(0),m_maxNeig(5),m_isDeflAllocated(false),m_isDeflInitialized(false) {}

  ~DGMRES() {}
  
  /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
    * \a x0 as an initial solution.
    *
    * \sa compute()
    */
  template<typename Rhs,typename Guess>
  inline const internal::solve_retval_with_guess<DGMRES, Rhs, Guess>
  solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
  {
    eigen_assert(m_isInitialized && "DGMRES is not initialized.");
    eigen_assert(Base::rows()==b.rows()
              && "DGMRES::solve(): invalid number of rows of the right hand side matrix b");
    return internal::solve_retval_with_guess
            <DGMRES, Rhs, Guess>(*this, b.derived(), x0);
  }
  
  /** \internal */
  template<typename Rhs,typename Dest>
  void _solveWithGuess(const Rhs& b, Dest& x) const
  {    
    bool failed = false;
    for(int j=0; j<b.cols(); ++j)
    {
      m_iterations = Base::maxIterations();
      m_error = Base::m_tolerance;
      
      typename Dest::ColXpr xj(x,j);
      dgmres(*mp_matrix, b.col(j), xj, Base::m_preconditioner);
    }
    m_info = failed ? NumericalIssue
           : m_error <= Base::m_tolerance ? Success
           : NoConvergence;
    m_isInitialized = true;
  }

  /** \internal */
  template<typename Rhs,typename Dest>
  void _solve(const Rhs& b, Dest& x) const
  {
    x = b;
    _solveWithGuess(b,x);
  }
  /** 
   * Get the restart value
    */
  int restart() { return m_restart; }
  
  /** 
   * Set the restart value (default is 30)  
   */
  void set_restart(const int restart) { m_restart=restart; }
  
  /** 
   * Set the number of eigenvalues to deflate at each restart 
   */
  void setEigenv(const int neig) 
  {
    m_neig = neig;
    if (neig+1 > m_maxNeig) m_maxNeig = neig+1; // To allow for complex conjugates
  }
  
  /** 
   * Get the size of the deflation subspace size
   */ 
  int deflSize() {return m_r; }
  
  /**
   * Set the maximum size of the deflation subspace
   */
  void setMaxEigenv(const int maxNeig) { m_maxNeig = maxNeig; }
  
  protected:
    // DGMRES algorithm 
    template<typename Rhs, typename Dest>
    void dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x, const Preconditioner& precond) const;
    // Perform one cycle of GMRES
    template<typename Dest>
    int dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const; 
    // Compute data to use for deflation 
    int dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const;
    // Apply deflation to a vector
    template<typename RhsType, typename DestType>
    int dgmresApplyDeflation(const RhsType& In, DestType& Out) const; 
    ComplexVector schurValues(const ComplexSchur<DenseMatrix>& schurofH) const;
    ComplexVector schurValues(const RealSchur<DenseMatrix>& schurofH) const;
    // Init data for deflation
    void dgmresInitDeflation(Index& rows) const; 
    mutable DenseMatrix m_V; // Krylov basis vectors
    mutable DenseMatrix m_H; // Hessenberg matrix 
    mutable DenseMatrix m_Hes; // Initial hessenberg matrix wihout Givens rotations applied
    mutable Index m_restart; // Maximum size of the Krylov subspace
    mutable DenseMatrix m_U; // Vectors that form the basis of the invariant subspace 
    mutable DenseMatrix m_MU; // matrix operator applied to m_U (for next cycles)
    mutable DenseMatrix m_T; /* T=U^T*M^{-1}*A*U */
    mutable PartialPivLU<DenseMatrix> m_luT; // LU factorization of m_T
    mutable int m_neig; //Number of eigenvalues to extract at each restart
    mutable int m_r; // Current number of deflated eigenvalues, size of m_U
    mutable int m_maxNeig; // Maximum number of eigenvalues to deflate
    mutable RealScalar m_lambdaN; //Modulus of the largest eigenvalue of A
    mutable bool m_isDeflAllocated;
    mutable bool m_isDeflInitialized;
    
    //Adaptive strategy 
    mutable RealScalar m_smv; // Smaller multiple of the remaining number of steps allowed
    mutable bool m_force; // Force the use of deflation at each restart
    
}; 
/** 
 * \brief Perform several cycles of restarted GMRES with modified Gram Schmidt, 
 * 
 * A right preconditioner is used combined with deflation.
 * 
 */
template< typename _MatrixType, typename _Preconditioner>
template<typename Rhs, typename Dest>
void DGMRES<_MatrixType, _Preconditioner>::dgmres(const MatrixType& mat,const Rhs& rhs, Dest& x,
              const Preconditioner& precond) const
{
  //Initialization
  int n = mat.rows(); 
  DenseVector r0(n); 
  int nbIts = 0; 
  m_H.resize(m_restart+1, m_restart);
  m_Hes.resize(m_restart, m_restart);
  m_V.resize(n,m_restart+1);
  //Initial residual vector and intial norm
  x = precond.solve(x);
  r0 = rhs - mat * x; 
  RealScalar beta = r0.norm(); 
  RealScalar normRhs = rhs.norm();
  m_error = beta/normRhs; 
  if(m_error < m_tolerance)
    m_info = Success; 
  else
    m_info = NoConvergence;
  
  // Iterative process
  while (nbIts < m_iterations && m_info == NoConvergence)
  {
    dgmresCycle(mat, precond, x, r0, beta, normRhs, nbIts); 
    
    // Compute the new residual vector for the restart 
    if (nbIts < m_iterations && m_info == NoConvergence)
      r0 = rhs - mat * x; 
  }
} 

/**
 * \brief Perform one restart cycle of DGMRES
 * \param mat The coefficient matrix
 * \param precond The preconditioner
 * \param x the new approximated solution
 * \param r0 The initial residual vector
 * \param beta The norm of the residual computed so far
 * \param normRhs The norm of the right hand side vector
 * \param nbIts The number of iterations
 */
template< typename _MatrixType, typename _Preconditioner>
template<typename Dest>
int DGMRES<_MatrixType, _Preconditioner>::dgmresCycle(const MatrixType& mat, const Preconditioner& precond, Dest& x, DenseVector& r0, RealScalar& beta, const RealScalar& normRhs, int& nbIts) const
{
  //Initialization 
  DenseVector g(m_restart+1); // Right hand side of the least square problem
  g.setZero();  
  g(0) = Scalar(beta); 
  m_V.col(0) = r0/beta; 
  m_info = NoConvergence; 
  std::vector<JacobiRotation<Scalar> >gr(m_restart); // Givens rotations
  int it = 0; // Number of inner iterations 
  int n = mat.rows();
  DenseVector tv1(n), tv2(n);  //Temporary vectors
  while (m_info == NoConvergence && it < m_restart && nbIts < m_iterations)
  {    
    // Apply preconditioner(s) at right
    if (m_isDeflInitialized )
    {
      dgmresApplyDeflation(m_V.col(it), tv1); // Deflation
      tv2 = precond.solve(tv1); 
    }
    else
    {
      tv2 = precond.solve(m_V.col(it)); // User's selected preconditioner
    }
    tv1 = mat * tv2; 
   
    // Orthogonalize it with the previous basis in the basis using modified Gram-Schmidt
    Scalar coef; 
    for (int i = 0; i <= it; ++i)
    { 
      coef = tv1.dot(m_V.col(i));
      tv1 = tv1 - coef * m_V.col(i); 
      m_H(i,it) = coef; 
      m_Hes(i,it) = coef; 
    }
    // Normalize the vector 
    coef = tv1.norm(); 
    m_V.col(it+1) = tv1/coef;
    m_H(it+1, it) = coef;
//     m_Hes(it+1,it) = coef; 
    
    // FIXME Check for happy breakdown 
    
    // Update Hessenberg matrix with Givens rotations
    for (int i = 1; i <= it; ++i) 
    {
      m_H.col(it).applyOnTheLeft(i-1,i,gr[i-1].adjoint());
    }
    // Compute the new plane rotation 
    gr[it].makeGivens(m_H(it, it), m_H(it+1,it)); 
    // Apply the new rotation
    m_H.col(it).applyOnTheLeft(it,it+1,gr[it].adjoint());
    g.applyOnTheLeft(it,it+1, gr[it].adjoint()); 
    
    beta = std::abs(g(it+1));
    m_error = beta/normRhs; 
    std::cerr << nbIts << " Relative Residual Norm " << m_error << std::endl;
    it++; nbIts++; 
    
    if (m_error < m_tolerance)
    {
      // The method has converged
      m_info = Success;
      break;
    }
  }
  
  // Compute the new coefficients by solving the least square problem
//   it++;
  //FIXME  Check first if the matrix is singular ... zero diagonal
  DenseVector nrs(m_restart); 
  nrs = m_H.topLeftCorner(it,it).template triangularView<Upper>().solve(g.head(it)); 
  
  // Form the new solution
  if (m_isDeflInitialized)
  {
    tv1 = m_V.leftCols(it) * nrs; 
    dgmresApplyDeflation(tv1, tv2); 
    x = x + precond.solve(tv2);
  }
  else
    x = x + precond.solve(m_V.leftCols(it) * nrs); 
  
  // Go for a new cycle and compute data for deflation
  if(nbIts < m_iterations && m_info == NoConvergence && m_neig > 0 && (m_r+m_neig) < m_maxNeig)
    dgmresComputeDeflationData(mat, precond, it, m_neig); 
  return 0; 
  
}


template< typename _MatrixType, typename _Preconditioner>
void DGMRES<_MatrixType, _Preconditioner>::dgmresInitDeflation(Index& rows) const
{
  m_U.resize(rows, m_maxNeig);
  m_MU.resize(rows, m_maxNeig); 
  m_T.resize(m_maxNeig, m_maxNeig);
  m_lambdaN = 0.0; 
  m_isDeflAllocated = true; 
}

template< typename _MatrixType, typename _Preconditioner>
inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const ComplexSchur<DenseMatrix>& schurofH) const
{
  return schurofH.matrixT().diagonal();
}

template< typename _MatrixType, typename _Preconditioner>
inline typename DGMRES<_MatrixType, _Preconditioner>::ComplexVector DGMRES<_MatrixType, _Preconditioner>::schurValues(const RealSchur<DenseMatrix>& schurofH) const
{
  typedef typename MatrixType::Index Index;
  const DenseMatrix& T = schurofH.matrixT();
  Index it = T.rows();
  ComplexVector eig(it);
  Index j = 0;
  while (j < it-1)
  {
    if (T(j+1,j) ==Scalar(0))
    {
      eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0)); 
      j++; 
    }
    else
    {
      eig(j) = std::complex<RealScalar>(T(j,j),T(j+1,j)); 
      eig(j+1) = std::complex<RealScalar>(T(j,j+1),T(j+1,j+1));
      j++;
    }
  }
  if (j < it-1) eig(j) = std::complex<RealScalar>(T(j,j),RealScalar(0));
  return eig;
}

template< typename _MatrixType, typename _Preconditioner>
int DGMRES<_MatrixType, _Preconditioner>::dgmresComputeDeflationData(const MatrixType& mat, const Preconditioner& precond, const Index& it, Index& neig) const
{
  // First, find the Schur form of the Hessenberg matrix H
  typename internal::conditional<NumTraits<Scalar>::IsComplex, ComplexSchur<DenseMatrix>, RealSchur<DenseMatrix> >::type schurofH; 
  bool computeU = true;
  DenseMatrix matrixQ(it,it); 
  matrixQ.setIdentity();
  schurofH.computeFromHessenberg(m_Hes.topLeftCorner(it,it), matrixQ, computeU); 
  
  ComplexVector eig(it);
  Matrix<Index,Dynamic,1>perm(it); 
  eig = this->schurValues(schurofH);
  
  // Reorder the absolute values of Schur values
  DenseRealVector modulEig(it); 
  for (int j=0; j<it; ++j) modulEig(j) = std::abs(eig(j)); 
  perm.setLinSpaced(it,0,it-1);
  internal::sortWithPermutation(modulEig, perm, neig);
  
  if (!m_lambdaN)
  {
    m_lambdaN = (std::max)(modulEig.maxCoeff(), m_lambdaN);
  }
  //Count the real number of extracted eigenvalues (with complex conjugates)
  int nbrEig = 0; 
  while (nbrEig < neig)
  {
    if(eig(perm(it-nbrEig-1)).imag() == RealScalar(0)) nbrEig++; 
    else nbrEig += 2; 
  }
  // Extract the  Schur vectors corresponding to the smallest Ritz values
  DenseMatrix Sr(it, nbrEig); 
  Sr.setZero();
  for (int j = 0; j < nbrEig; j++)
  {
    Sr.col(j) = schurofH.matrixU().col(perm(it-j-1));
  }
  
  // Form the Schur vectors of the initial matrix using the Krylov basis
  DenseMatrix X; 
  X = m_V.leftCols(it) * Sr;
  if (m_r)
  {
   // Orthogonalize X against m_U using modified Gram-Schmidt
   for (int j = 0; j < nbrEig; j++)
     for (int k =0; k < m_r; k++)
      X.col(j) = X.col(j) - (m_U.col(k).dot(X.col(j)))*m_U.col(k); 
  }
  
  // Compute m_MX = A * M^-1 * X
  Index m = m_V.rows();
  if (!m_isDeflAllocated) 
    dgmresInitDeflation(m); 
  DenseMatrix MX(m, nbrEig);
  DenseVector tv1(m);
  for (int j = 0; j < nbrEig; j++)
  {
    tv1 = mat * X.col(j);
    MX.col(j) = precond.solve(tv1);
  }
  
  //Update m_T = [U'MU U'MX; X'MU X'MX]
  m_T.block(m_r, m_r, nbrEig, nbrEig) = X.transpose() * MX; 
  if(m_r)
  {
    m_T.block(0, m_r, m_r, nbrEig) = m_U.leftCols(m_r).transpose() * MX; 
    m_T.block(m_r, 0, nbrEig, m_r) = X.transpose() * m_MU.leftCols(m_r);
  }
  
  // Save X into m_U and m_MX in m_MU
  for (int j = 0; j < nbrEig; j++) m_U.col(m_r+j) = X.col(j);
  for (int j = 0; j < nbrEig; j++) m_MU.col(m_r+j) = MX.col(j);
  // Increase the size of the invariant subspace
  m_r += nbrEig; 
  
  // Factorize m_T into m_luT
  m_luT.compute(m_T.topLeftCorner(m_r, m_r));
  
  //FIXME CHeck if the factorization was correctly done (nonsingular matrix)
  m_isDeflInitialized = true;
  return 0; 
}
template<typename _MatrixType, typename _Preconditioner>
template<typename RhsType, typename DestType>
int DGMRES<_MatrixType, _Preconditioner>::dgmresApplyDeflation(const RhsType &x, DestType &y) const
{
  DenseVector x1 = m_U.leftCols(m_r).transpose() * x; 
  y = x + m_U.leftCols(m_r) * ( m_lambdaN * m_luT.solve(x1) - x1);
  return 0; 
}

namespace internal {

  template<typename _MatrixType, typename _Preconditioner, typename Rhs>
struct solve_retval<DGMRES<_MatrixType, _Preconditioner>, Rhs>
  : solve_retval_base<DGMRES<_MatrixType, _Preconditioner>, Rhs>
{
  typedef DGMRES<_MatrixType, _Preconditioner> Dec;
  EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    dec()._solve(rhs(),dst);
  }
};
} // end namespace internal

} // end namespace Eigen
#endif