MatrixExponential.h 14.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_EXPONENTIAL
#define EIGEN_MATRIX_EXPONENTIAL

#include "StemFunction.h"

namespace Eigen {

/** \ingroup MatrixFunctions_Module
  * \brief Class for computing the matrix exponential.
  * \tparam MatrixType type of the argument of the exponential,
  * expected to be an instantiation of the Matrix class template.
  */
template <typename MatrixType>
class MatrixExponential {

  public:

    /** \brief Constructor.
      * 
      * The class stores a reference to \p M, so it should not be
      * changed (or destroyed) before compute() is called.
      *
      * \param[in] M  matrix whose exponential is to be computed.
      */
    MatrixExponential(const MatrixType &M);

    /** \brief Computes the matrix exponential.
      *
      * \param[out] result  the matrix exponential of \p M in the constructor.
      */
    template <typename ResultType> 
    void compute(ResultType &result);

  private:

    // Prevent copying
    MatrixExponential(const MatrixExponential&);
    MatrixExponential& operator=(const MatrixExponential&);

    /** \brief Compute the (3,3)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade3(const MatrixType &A);

    /** \brief Compute the (5,5)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade5(const MatrixType &A);

    /** \brief Compute the (7,7)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade7(const MatrixType &A);

    /** \brief Compute the (9,9)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade9(const MatrixType &A);

    /** \brief Compute the (13,13)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade13(const MatrixType &A);

    /** \brief Compute the (17,17)-Pad&eacute; approximant to the exponential.
     *
     *  After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
     *  approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
     *
     *  This function activates only if your long double is double-double or quadruple.
     *
     *  \param[in] A   Argument of matrix exponential
     */
    void pade17(const MatrixType &A);

    /** \brief Compute Pad&eacute; approximant to the exponential.
     *
     * Computes \c m_U, \c m_V and \c m_squarings such that
     * \f$ (V+U)(V-U)^{-1} \f$ is a Pad&eacute; of
     * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The
     * degree of the Pad&eacute; approximant and the value of
     * squarings are chosen such that the approximation error is no
     * more than the round-off error.
     *
     * The argument of this function should correspond with the (real
     * part of) the entries of \c m_M.  It is used to select the
     * correct implementation using overloading.
     */
    void computeUV(double);

    /** \brief Compute Pad&eacute; approximant to the exponential.
     *
     *  \sa computeUV(double);
     */
    void computeUV(float);
    
    /** \brief Compute Pad&eacute; approximant to the exponential.
     *
     *  \sa computeUV(double);
     */
    void computeUV(long double);

    typedef typename internal::traits<MatrixType>::Scalar Scalar;
    typedef typename NumTraits<Scalar>::Real RealScalar;
    typedef typename std::complex<RealScalar> ComplexScalar;

    /** \brief Reference to matrix whose exponential is to be computed. */
    typename internal::nested<MatrixType>::type m_M;

    /** \brief Odd-degree terms in numerator of Pad&eacute; approximant. */
    MatrixType m_U;

    /** \brief Even-degree terms in numerator of Pad&eacute; approximant. */
    MatrixType m_V;

    /** \brief Used for temporary storage. */
    MatrixType m_tmp1;

    /** \brief Used for temporary storage. */
    MatrixType m_tmp2;

    /** \brief Identity matrix of the same size as \c m_M. */
    MatrixType m_Id;

    /** \brief Number of squarings required in the last step. */
    int m_squarings;

    /** \brief L1 norm of m_M. */
    RealScalar m_l1norm;
};

template <typename MatrixType>
MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
  m_M(M),
  m_U(M.rows(),M.cols()),
  m_V(M.rows(),M.cols()),
  m_tmp1(M.rows(),M.cols()),
  m_tmp2(M.rows(),M.cols()),
  m_Id(MatrixType::Identity(M.rows(), M.cols())),
  m_squarings(0),
  m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff())
{
  /* empty body */
}

template <typename MatrixType>
template <typename ResultType> 
void MatrixExponential<MatrixType>::compute(ResultType &result)
{
#if LDBL_MANT_DIG > 112 // rarely happens
  if(sizeof(RealScalar) > 14) {
    result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp);
    return;
  }
#endif
  computeUV(RealScalar());
  m_tmp1 = m_U + m_V;   // numerator of Pade approximant
  m_tmp2 = -m_U + m_V;  // denominator of Pade approximant
  result = m_tmp2.partialPivLu().solve(m_tmp1);
  for (int i=0; i<m_squarings; i++)
    result *= result;   // undo scaling by repeated squaring
}

template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A)
{
  const RealScalar b[] = {120., 60., 12., 1.};
  m_tmp1.noalias() = A * A;
  m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_V = b[2]*m_tmp1 + b[0]*m_Id;
}

template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A)
{
  const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.};
  MatrixType A2 = A * A;
  m_tmp1.noalias() = A2 * A2;
  m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id;
}

template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A)
{
  const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.};
  MatrixType A2 = A * A;
  MatrixType A4 = A2 * A2;
  m_tmp1.noalias() = A4 * A2;
  m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}

template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A)
{
  const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240.,
		      2162160., 110880., 3960., 90., 1.};
  MatrixType A2 = A * A;
  MatrixType A4 = A2 * A2;
  MatrixType A6 = A4 * A2;
  m_tmp1.noalias() = A6 * A2;
  m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}

template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A)
{
  const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600.,
		      1187353796428800., 129060195264000., 10559470521600., 670442572800.,
		      33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.};
  MatrixType A2 = A * A;
  MatrixType A4 = A2 * A2;
  m_tmp1.noalias() = A4 * A2;
  m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage
  m_tmp2.noalias() = m_tmp1 * m_V;
  m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2;
  m_V.noalias() = m_tmp1 * m_tmp2;
  m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}

#if LDBL_MANT_DIG > 64
template <typename MatrixType>
EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A)
{
  const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L,
		      100610229646136770560000.L, 15720348382208870400000.L,
		      1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L,
		      595373117923584000.L, 27563570274240000.L, 1060137318240000.L,
		      33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L,
		      46512.L, 306.L, 1.L};
  MatrixType A2 = A * A;
  MatrixType A4 = A2 * A2;
  MatrixType A6 = A4 * A2;
  m_tmp1.noalias() = A4 * A4;
  m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2; // used for temporary storage
  m_tmp2.noalias() = m_tmp1 * m_V;
  m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id;
  m_U.noalias() = A * m_tmp2;
  m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2;
  m_V.noalias() = m_tmp1 * m_tmp2;
  m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id;
}
#endif

template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(float)
{
  using std::frexp;
  using std::pow;
  if (m_l1norm < 4.258730016922831e-001) {
    pade3(m_M);
  } else if (m_l1norm < 1.880152677804762e+000) {
    pade5(m_M);
  } else {
    const float maxnorm = 3.925724783138660f;
    frexp(m_l1norm / maxnorm, &m_squarings);
    if (m_squarings < 0) m_squarings = 0;
    MatrixType A = m_M / Scalar(pow(2, m_squarings));
    pade7(A);
  }
}

template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(double)
{
  using std::frexp;
  using std::pow;
  if (m_l1norm < 1.495585217958292e-002) {
    pade3(m_M);
  } else if (m_l1norm < 2.539398330063230e-001) {
    pade5(m_M);
  } else if (m_l1norm < 9.504178996162932e-001) {
    pade7(m_M);
  } else if (m_l1norm < 2.097847961257068e+000) {
    pade9(m_M);
  } else {
    const double maxnorm = 5.371920351148152;
    frexp(m_l1norm / maxnorm, &m_squarings);
    if (m_squarings < 0) m_squarings = 0;
    MatrixType A = m_M / Scalar(pow(2, m_squarings));
    pade13(A);
  }
}

template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(long double)
{
  using std::frexp;
  using std::pow;
#if   LDBL_MANT_DIG == 53   // double precision
  computeUV(double());
#elif LDBL_MANT_DIG <= 64   // extended precision
  if (m_l1norm < 4.1968497232266989671e-003L) {
    pade3(m_M);
  } else if (m_l1norm < 1.1848116734693823091e-001L) {
    pade5(m_M);
  } else if (m_l1norm < 5.5170388480686700274e-001L) {
    pade7(m_M);
  } else if (m_l1norm < 1.3759868875587845383e+000L) {
    pade9(m_M);
  } else {
    const long double maxnorm = 4.0246098906697353063L;
    frexp(m_l1norm / maxnorm, &m_squarings);
    if (m_squarings < 0) m_squarings = 0;
    MatrixType A = m_M / Scalar(pow(2, m_squarings));
    pade13(A);
  }
#elif LDBL_MANT_DIG <= 106  // double-double
  if (m_l1norm < 3.2787892205607026992947488108213e-005L) {
    pade3(m_M);
  } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) {
    pade5(m_M);
  } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) {
    pade7(m_M);
  } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) {
    pade9(m_M);
  } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) {
    pade13(m_M);
  } else {
    const long double maxnorm = 3.2579440895405400856599663723517L;
    frexp(m_l1norm / maxnorm, &m_squarings);
    if (m_squarings < 0) m_squarings = 0;
    MatrixType A = m_M / pow(Scalar(2), m_squarings);
    pade17(A);
  }
#elif LDBL_MANT_DIG <= 112  // quadruple precison
  if (m_l1norm < 1.639394610288918690547467954466970e-005L) {
    pade3(m_M);
  } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) {
    pade5(m_M);
  } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) {
    pade7(m_M);
  } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) {
    pade9(m_M);
  } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) {
    pade13(m_M);
  } else {
    const long double maxnorm = 2.884233277829519311757165057717815L;
    frexp(m_l1norm / maxnorm, &m_squarings);
    if (m_squarings < 0) m_squarings = 0;
    MatrixType A = m_M / Scalar(pow(2, m_squarings));
    pade17(A);
  }
#else
  // this case should be handled in compute()
  eigen_assert(false && "Bug in MatrixExponential"); 
#endif  // LDBL_MANT_DIG
}

/** \ingroup MatrixFunctions_Module
  *
  * \brief Proxy for the matrix exponential of some matrix (expression).
  *
  * \tparam Derived  Type of the argument to the matrix exponential.
  *
  * This class holds the argument to the matrix exponential until it
  * is assigned or evaluated for some other reason (so the argument
  * should not be changed in the meantime). It is the return type of
  * MatrixBase::exp() and most of the time this is the only way it is
  * used.
  */
template<typename Derived> struct MatrixExponentialReturnValue
: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
{
    typedef typename Derived::Index Index;
  public:
    /** \brief Constructor.
      *
      * \param[in] src %Matrix (expression) forming the argument of the
      * matrix exponential.
      */
    MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }

    /** \brief Compute the matrix exponential.
      *
      * \param[out] result the matrix exponential of \p src in the
      * constructor.
      */
    template <typename ResultType>
    inline void evalTo(ResultType& result) const
    {
      const typename Derived::PlainObject srcEvaluated = m_src.eval();
      MatrixExponential<typename Derived::PlainObject> me(srcEvaluated);
      me.compute(result);
    }

    Index rows() const { return m_src.rows(); }
    Index cols() const { return m_src.cols(); }

  protected:
    const Derived& m_src;
  private:
    MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&);
};

namespace internal {
template<typename Derived>
struct traits<MatrixExponentialReturnValue<Derived> >
{
  typedef typename Derived::PlainObject ReturnType;
};
}

template <typename Derived>
const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const
{
  eigen_assert(rows() == cols());
  return MatrixExponentialReturnValue<Derived>(derived());
}

} // end namespace Eigen

#endif // EIGEN_MATRIX_EXPONENTIAL