MatrixLogarithm.h 22.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
// Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_LOGARITHM
#define EIGEN_MATRIX_LOGARITHM

#ifndef M_PI
#define M_PI 3.141592653589793238462643383279503L
#endif

namespace Eigen { 

/** \ingroup MatrixFunctions_Module
  * \class MatrixLogarithmAtomic
  * \brief Helper class for computing matrix logarithm of atomic matrices.
  *
  * \internal
  * Here, an atomic matrix is a triangular matrix whose diagonal
  * entries are close to each other.
  *
  * \sa class MatrixFunctionAtomic, MatrixBase::log()
  */
template <typename MatrixType>
class MatrixLogarithmAtomic
{
public:

  typedef typename MatrixType::Scalar Scalar;
  // typedef typename MatrixType::Index Index;
  typedef typename NumTraits<Scalar>::Real RealScalar;
  // typedef typename internal::stem_function<Scalar>::type StemFunction;
  // typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType;

  /** \brief Constructor. */
  MatrixLogarithmAtomic() { }

  /** \brief Compute matrix logarithm of atomic matrix
    * \param[in]  A  argument of matrix logarithm, should be upper triangular and atomic
    * \returns  The logarithm of \p A.
    */
  MatrixType compute(const MatrixType& A);

private:

  void compute2x2(const MatrixType& A, MatrixType& result);
  void computeBig(const MatrixType& A, MatrixType& result);
  int getPadeDegree(float normTminusI);
  int getPadeDegree(double normTminusI);
  int getPadeDegree(long double normTminusI);
  void computePade(MatrixType& result, const MatrixType& T, int degree);
  void computePade3(MatrixType& result, const MatrixType& T);
  void computePade4(MatrixType& result, const MatrixType& T);
  void computePade5(MatrixType& result, const MatrixType& T);
  void computePade6(MatrixType& result, const MatrixType& T);
  void computePade7(MatrixType& result, const MatrixType& T);
  void computePade8(MatrixType& result, const MatrixType& T);
  void computePade9(MatrixType& result, const MatrixType& T);
  void computePade10(MatrixType& result, const MatrixType& T);
  void computePade11(MatrixType& result, const MatrixType& T);

  static const int minPadeDegree = 3;
  static const int maxPadeDegree = std::numeric_limits<RealScalar>::digits<= 24?  5:  // single precision
                                   std::numeric_limits<RealScalar>::digits<= 53?  7:  // double precision
                                   std::numeric_limits<RealScalar>::digits<= 64?  8:  // extended precision
                                   std::numeric_limits<RealScalar>::digits<=106? 10:  // double-double
                                                                                 11;  // quadruple precision

  // Prevent copying
  MatrixLogarithmAtomic(const MatrixLogarithmAtomic&);
  MatrixLogarithmAtomic& operator=(const MatrixLogarithmAtomic&);
};

/** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */
template <typename MatrixType>
MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A)
{
  using std::log;
  MatrixType result(A.rows(), A.rows());
  if (A.rows() == 1)
    result(0,0) = log(A(0,0));
  else if (A.rows() == 2)
    compute2x2(A, result);
  else
    computeBig(A, result);
  return result;
}

/** \brief Compute logarithm of 2x2 triangular matrix. */
template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixType& result)
{
  using std::abs;
  using std::ceil;
  using std::imag;
  using std::log;

  Scalar logA00 = log(A(0,0));
  Scalar logA11 = log(A(1,1));

  result(0,0) = logA00;
  result(1,0) = Scalar(0);
  result(1,1) = logA11;

  if (A(0,0) == A(1,1)) {
    result(0,1) = A(0,1) / A(0,0);
  } else if ((abs(A(0,0)) < 0.5*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) {
    result(0,1) = A(0,1) * (logA11 - logA00) / (A(1,1) - A(0,0));
  } else {
    // computation in previous branch is inaccurate if A(1,1) \approx A(0,0)
    int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI)));
    Scalar y = A(1,1) - A(0,0), x = A(1,1) + A(0,0);
    result(0,1) = A(0,1) * (Scalar(2) * numext::atanh2(y,x) + Scalar(0,2*M_PI*unwindingNumber)) / y;
  }
}

/** \brief Compute logarithm of triangular matrices with size > 2. 
  * \details This uses a inverse scale-and-square algorithm. */
template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixType& result)
{
  using std::pow;
  int numberOfSquareRoots = 0;
  int numberOfExtraSquareRoots = 0;
  int degree;
  MatrixType T = A, sqrtT;
  const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1:                     // single precision
                                    maxPadeDegree<= 7? 2.6429608311114350e-1:                     // double precision
                                    maxPadeDegree<= 8? 2.32777776523703892094e-1L:                // extended precision
                                    maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L:    // double-double
                                                       1.1880960220216759245467951592883642e-1L;  // quadruple precision

  while (true) {
    RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff();
    if (normTminusI < maxNormForPade) {
      degree = getPadeDegree(normTminusI);
      int degree2 = getPadeDegree(normTminusI / RealScalar(2));
      if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) 
        break;
      ++numberOfExtraSquareRoots;
    }
    MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
    T = sqrtT.template triangularView<Upper>();
    ++numberOfSquareRoots;
  }

  computePade(result, T, degree);
  result *= pow(RealScalar(2), numberOfSquareRoots);
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */
template <typename MatrixType>
int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI)
{
  const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1,
            5.3149729967117310e-1 };
  int degree = 3;
  for (; degree <= maxPadeDegree; ++degree) 
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */
template <typename MatrixType>
int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI)
{
  const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2,
            1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 };
  int degree = 3;
  for (; degree <= maxPadeDegree; ++degree)
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */
template <typename MatrixType>
int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI)
{
#if   LDBL_MANT_DIG == 53         // double precision
  const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L,
            1.1352802267628681e-1L, 1.8662860613541288e-1L, 2.642960831111435e-1L };
#elif LDBL_MANT_DIG <= 64         // extended precision
  const long double maxNormForPade[] = { 5.48256690357782863103e-3L /* degree = 3 */, 2.34559162387971167321e-2L,
            5.84603923897347449857e-2L, 1.08486423756725170223e-1L, 1.68385767881294446649e-1L,
            2.32777776523703892094e-1L };
#elif LDBL_MANT_DIG <= 106        // double-double
  const long double maxNormForPade[] = { 8.58970550342939562202529664318890e-5L /* degree = 3 */,
            9.34074328446359654039446552677759e-4L, 4.26117194647672175773064114582860e-3L,
            1.21546224740281848743149666560464e-2L, 2.61100544998339436713088248557444e-2L,
            4.66170074627052749243018566390567e-2L, 7.32585144444135027565872014932387e-2L,
            1.05026503471351080481093652651105e-1L };
#else                             // quadruple precision
  const long double maxNormForPade[] = { 4.7419931187193005048501568167858103e-5L /* degree = 3 */,
            5.8853168473544560470387769480192666e-4L, 2.9216120366601315391789493628113520e-3L,
            8.8415758124319434347116734705174308e-3L, 1.9850836029449446668518049562565291e-2L,
            3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L,
            8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L };
#endif
  int degree = 3;
  for (; degree <= maxPadeDegree; ++degree)
    if (normTminusI <= maxNormForPade[degree - minPadeDegree])
      break;
  return degree;
}

/* \brief Compute Pade approximation to matrix logarithm */
template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade(MatrixType& result, const MatrixType& T, int degree)
{
  switch (degree) {
    case 3:  computePade3(result, T);  break;
    case 4:  computePade4(result, T);  break;
    case 5:  computePade5(result, T);  break;
    case 6:  computePade6(result, T);  break;
    case 7:  computePade7(result, T);  break;
    case 8:  computePade8(result, T);  break;
    case 9:  computePade9(result, T);  break;
    case 10: computePade10(result, T); break;
    case 11: computePade11(result, T); break;
    default: assert(false); // should never happen
  }
} 

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade3(MatrixType& result, const MatrixType& T)
{
  const int degree = 3;
  const RealScalar nodes[]   = { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L,
            0.8872983346207416885179265399782400L };
  const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L,
            0.2777777777777777777777777777777778L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade4(MatrixType& result, const MatrixType& T)
{
  const int degree = 4;
  const RealScalar nodes[]   = { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L,
            0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L };
  const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L,
            0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade5(MatrixType& result, const MatrixType& T)
{
  const int degree = 5;
  const RealScalar nodes[]   = { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L,
            0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L,
            0.9530899229693319963988134391496965L };
  const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L,
            0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L,
            0.1184634425280945437571320203599587L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade6(MatrixType& result, const MatrixType& T)
{
  const int degree = 6;
  const RealScalar nodes[]   = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L,
            0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L,
            0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L };
  const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L,
            0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L,
            0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade7(MatrixType& result, const MatrixType& T)
{
  const int degree = 7;
  const RealScalar nodes[]   = { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L,
            0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L,
            0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L,
            0.9745539561713792622630948420239256L };
  const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L,
            0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L,
            0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L,
            0.0647424830844348466353057163395410L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade8(MatrixType& result, const MatrixType& T)
{
  const int degree = 8;
  const RealScalar nodes[]   = { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L,
            0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L,
            0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L,
            0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L };
  const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L,
            0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L,
            0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L,
            0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade9(MatrixType& result, const MatrixType& T)
{
  const int degree = 9;
  const RealScalar nodes[]   = { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L,
            0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L,
            0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L,
            0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L,
            0.9840801197538130449177881014518364L };
  const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L,
            0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L,
            0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L,
            0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L,
            0.0406371941807872059859460790552618L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade10(MatrixType& result, const MatrixType& T)
{
  const int degree = 10;
  const RealScalar nodes[]   = { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L,
            0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L,
            0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L,
            0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L,
            0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L };
  const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L,
            0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L,
            0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L,
            0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L,
            0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

template <typename MatrixType>
void MatrixLogarithmAtomic<MatrixType>::computePade11(MatrixType& result, const MatrixType& T)
{
  const int degree = 11;
  const RealScalar nodes[]   = { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L,
            0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L,
            0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L,
            0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L,
            0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L,
            0.9891143290730284964019690005614287L };
  const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L,
            0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L,
            0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L,
            0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L,
            0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L,
            0.0278342835580868332413768602212743L };
  eigen_assert(degree <= maxPadeDegree);
  MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows());
  result.setZero(T.rows(), T.rows());
  for (int k = 0; k < degree; ++k)
    result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI)
                           .template triangularView<Upper>().solve(TminusI);
}

/** \ingroup MatrixFunctions_Module
  *
  * \brief Proxy for the matrix logarithm of some matrix (expression).
  *
  * \tparam Derived  Type of the argument to the matrix function.
  *
  * This class holds the argument to the matrix function until it is
  * assigned or evaluated for some other reason (so the argument
  * should not be changed in the meantime). It is the return type of
  * MatrixBase::log() and most of the time this is the only way it
  * is used.
  */
template<typename Derived> class MatrixLogarithmReturnValue
: public ReturnByValue<MatrixLogarithmReturnValue<Derived> >
{
public:

  typedef typename Derived::Scalar Scalar;
  typedef typename Derived::Index Index;

  /** \brief Constructor.
    *
    * \param[in]  A  %Matrix (expression) forming the argument of the matrix logarithm.
    */
  MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { }
  
  /** \brief Compute the matrix logarithm.
    *
    * \param[out]  result  Logarithm of \p A, where \A is as specified in the constructor.
    */
  template <typename ResultType>
  inline void evalTo(ResultType& result) const
  {
    typedef typename Derived::PlainObject PlainObject;
    typedef internal::traits<PlainObject> Traits;
    static const int RowsAtCompileTime = Traits::RowsAtCompileTime;
    static const int ColsAtCompileTime = Traits::ColsAtCompileTime;
    static const int Options = PlainObject::Options;
    typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar;
    typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
    typedef MatrixLogarithmAtomic<DynMatrixType> AtomicType;
    AtomicType atomic;
    
    const PlainObject Aevaluated = m_A.eval();
    MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic);
    mf.compute(result);
  }

  Index rows() const { return m_A.rows(); }
  Index cols() const { return m_A.cols(); }
  
private:
  typename internal::nested<Derived>::type m_A;
  
  MatrixLogarithmReturnValue& operator=(const MatrixLogarithmReturnValue&);
};

namespace internal {
  template<typename Derived>
  struct traits<MatrixLogarithmReturnValue<Derived> >
  {
    typedef typename Derived::PlainObject ReturnType;
  };
}


/********** MatrixBase method **********/


template <typename Derived>
const MatrixLogarithmReturnValue<Derived> MatrixBase<Derived>::log() const
{
  eigen_assert(rows() == cols());
  return MatrixLogarithmReturnValue<Derived>(derived());
}

} // end namespace Eigen

#endif // EIGEN_MATRIX_LOGARITHM