MatrixSquareRoot.h 16.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_MATRIX_SQUARE_ROOT
#define EIGEN_MATRIX_SQUARE_ROOT

namespace Eigen { 

/** \ingroup MatrixFunctions_Module
  * \brief Class for computing matrix square roots of upper quasi-triangular matrices.
  * \tparam  MatrixType  type of the argument of the matrix square root,
  *                      expected to be an instantiation of the Matrix class template.
  *
  * This class computes the square root of the upper quasi-triangular
  * matrix stored in the upper Hessenberg part of the matrix passed to
  * the constructor.
  *
  * \sa MatrixSquareRoot, MatrixSquareRootTriangular
  */
template <typename MatrixType>
class MatrixSquareRootQuasiTriangular
{
  public:

    /** \brief Constructor. 
      *
      * \param[in]  A  upper quasi-triangular matrix whose square root 
      *                is to be computed.
      *
      * The class stores a reference to \p A, so it should not be
      * changed (or destroyed) before compute() is called.
      */
    MatrixSquareRootQuasiTriangular(const MatrixType& A) 
      : m_A(A) 
    {
      eigen_assert(A.rows() == A.cols());
    }
    
    /** \brief Compute the matrix square root
      *
      * \param[out] result  square root of \p A, as specified in the constructor.
      *
      * Only the upper Hessenberg part of \p result is updated, the
      * rest is not touched.  See MatrixBase::sqrt() for details on
      * how this computation is implemented.
      */
    template <typename ResultType> void compute(ResultType &result);    
    
  private:
    typedef typename MatrixType::Index Index;
    typedef typename MatrixType::Scalar Scalar;
    
    void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
    void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
    void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
    void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j);
    void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j);
    void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j);
    void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j);
  
    template <typename SmallMatrixType>
    static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A, 
				     const SmallMatrixType& B, const SmallMatrixType& C);
  
    const MatrixType& m_A;
};

template <typename MatrixType>
template <typename ResultType> 
void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
{
  result.resize(m_A.rows(), m_A.cols());
  computeDiagonalPartOfSqrt(result, m_A);
  computeOffDiagonalPartOfSqrt(result, m_A);
}

// pre:  T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT, 
									  const MatrixType& T)
{
  using std::sqrt;
  const Index size = m_A.rows();
  for (Index i = 0; i < size; i++) {
    if (i == size - 1 || T.coeff(i+1, i) == 0) {
      eigen_assert(T(i,i) >= 0);
      sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
    }
    else {
      compute2x2diagonalBlock(sqrtT, T, i);
      ++i;
    }
  }
}

// pre:  T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
// post: sqrtT is the square root of T.
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, 
									     const MatrixType& T)
{
  const Index size = m_A.rows();
  for (Index j = 1; j < size; j++) {
      if (T.coeff(j, j-1) != 0)  // if T(j-1:j, j-1:j) is a 2-by-2 block
	continue;
    for (Index i = j-1; i >= 0; i--) {
      if (i > 0 && T.coeff(i, i-1) != 0)  // if T(i-1:i, i-1:i) is a 2-by-2 block
	continue;
      bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
      bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
      if (iBlockIs2x2 && jBlockIs2x2) 
	compute2x2offDiagonalBlock(sqrtT, T, i, j);
      else if (iBlockIs2x2 && !jBlockIs2x2) 
	compute2x1offDiagonalBlock(sqrtT, T, i, j);
      else if (!iBlockIs2x2 && jBlockIs2x2) 
	compute1x2offDiagonalBlock(sqrtT, T, i, j);
      else if (!iBlockIs2x2 && !jBlockIs2x2) 
	compute1x1offDiagonalBlock(sqrtT, T, i, j);
    }
  }
}

// pre:  T.block(i,i,2,2) has complex conjugate eigenvalues
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
{
  // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
  //       in EigenSolver. If we expose it, we could call it directly from here.
  Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
  EigenSolver<Matrix<Scalar,2,2> > es(block);
  sqrtT.template block<2,2>(i,i)
    = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real();
}

// pre:  block structure of T is such that (i,j) is a 1x1 block,
//       all blocks of sqrtT to left of and below (i,j) are correct
// post: sqrtT(i,j) has the correct value
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j)
{
  Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
  sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
}

// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j)
{
  Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
  if (j-i > 1)
    rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
  Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity();
  A += sqrtT.template block<2,2>(j,j).transpose();
  sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose());
}

// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j)
{
  Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
  if (j-i > 2)
    rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
  Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity();
  A += sqrtT.template block<2,2>(i,i);
  sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs);
}

// similar to compute1x1offDiagonalBlock()
template <typename MatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, 
				  typename MatrixType::Index i, typename MatrixType::Index j)
{
  Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
  Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
  Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
  if (j-i > 2)
    C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
  Matrix<Scalar,2,2> X;
  solveAuxiliaryEquation(X, A, B, C);
  sqrtT.template block<2,2>(i,j) = X;
}

// solves the equation A X + X B = C where all matrices are 2-by-2
template <typename MatrixType>
template <typename SmallMatrixType>
void MatrixSquareRootQuasiTriangular<MatrixType>
     ::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
			      const SmallMatrixType& B, const SmallMatrixType& C)
{
  EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
		      EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);

  Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
  coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
  coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
  coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0);
  coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1);
  coeffMatrix.coeffRef(0,1) = B.coeff(1,0);
  coeffMatrix.coeffRef(0,2) = A.coeff(0,1);
  coeffMatrix.coeffRef(1,0) = B.coeff(0,1);
  coeffMatrix.coeffRef(1,3) = A.coeff(0,1);
  coeffMatrix.coeffRef(2,0) = A.coeff(1,0);
  coeffMatrix.coeffRef(2,3) = B.coeff(1,0);
  coeffMatrix.coeffRef(3,1) = A.coeff(1,0);
  coeffMatrix.coeffRef(3,2) = B.coeff(0,1);
  
  Matrix<Scalar,4,1> rhs;
  rhs.coeffRef(0) = C.coeff(0,0);
  rhs.coeffRef(1) = C.coeff(0,1);
  rhs.coeffRef(2) = C.coeff(1,0);
  rhs.coeffRef(3) = C.coeff(1,1);
  
  Matrix<Scalar,4,1> result;
  result = coeffMatrix.fullPivLu().solve(rhs);

  X.coeffRef(0,0) = result.coeff(0);
  X.coeffRef(0,1) = result.coeff(1);
  X.coeffRef(1,0) = result.coeff(2);
  X.coeffRef(1,1) = result.coeff(3);
}


/** \ingroup MatrixFunctions_Module
  * \brief Class for computing matrix square roots of upper triangular matrices.
  * \tparam  MatrixType  type of the argument of the matrix square root,
  *                      expected to be an instantiation of the Matrix class template.
  *
  * This class computes the square root of the upper triangular matrix
  * stored in the upper triangular part (including the diagonal) of
  * the matrix passed to the constructor.
  *
  * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
  */
template <typename MatrixType>
class MatrixSquareRootTriangular
{
  public:
    MatrixSquareRootTriangular(const MatrixType& A) 
      : m_A(A) 
    {
      eigen_assert(A.rows() == A.cols());
    }

    /** \brief Compute the matrix square root
      *
      * \param[out] result  square root of \p A, as specified in the constructor.
      *
      * Only the upper triangular part (including the diagonal) of 
      * \p result is updated, the rest is not touched.  See
      * MatrixBase::sqrt() for details on how this computation is
      * implemented.
      */
    template <typename ResultType> void compute(ResultType &result);    

 private:
    const MatrixType& m_A;
};

template <typename MatrixType>
template <typename ResultType> 
void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
{
  using std::sqrt;

  // Compute square root of m_A and store it in upper triangular part of result
  // This uses that the square root of triangular matrices can be computed directly.
  result.resize(m_A.rows(), m_A.cols());
  typedef typename MatrixType::Index Index;
  for (Index i = 0; i < m_A.rows(); i++) {
    result.coeffRef(i,i) = sqrt(m_A.coeff(i,i));
  }
  for (Index j = 1; j < m_A.cols(); j++) {
    for (Index i = j-1; i >= 0; i--) {
      typedef typename MatrixType::Scalar Scalar;
      // if i = j-1, then segment has length 0 so tmp = 0
      Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
      // denominator may be zero if original matrix is singular
      result.coeffRef(i,j) = (m_A.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
    }
  }
}


/** \ingroup MatrixFunctions_Module
  * \brief Class for computing matrix square roots of general matrices.
  * \tparam  MatrixType  type of the argument of the matrix square root,
  *                      expected to be an instantiation of the Matrix class template.
  *
  * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
  */
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
class MatrixSquareRoot
{
  public:

    /** \brief Constructor. 
      *
      * \param[in]  A  matrix whose square root is to be computed.
      *
      * The class stores a reference to \p A, so it should not be
      * changed (or destroyed) before compute() is called.
      */
    MatrixSquareRoot(const MatrixType& A); 
    
    /** \brief Compute the matrix square root
      *
      * \param[out] result  square root of \p A, as specified in the constructor.
      *
      * See MatrixBase::sqrt() for details on how this computation is
      * implemented.
      */
    template <typename ResultType> void compute(ResultType &result);    
};


// ********** Partial specialization for real matrices **********

template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 0>
{
  public:

    MatrixSquareRoot(const MatrixType& A) 
      : m_A(A) 
    {  
      eigen_assert(A.rows() == A.cols());
    }
  
    template <typename ResultType> void compute(ResultType &result)
    {
      // Compute Schur decomposition of m_A
      const RealSchur<MatrixType> schurOfA(m_A);  
      const MatrixType& T = schurOfA.matrixT();
      const MatrixType& U = schurOfA.matrixU();
    
      // Compute square root of T
      MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.cols());
      MatrixSquareRootQuasiTriangular<MatrixType>(T).compute(sqrtT);
    
      // Compute square root of m_A
      result = U * sqrtT * U.adjoint();
    }
    
  private:
    const MatrixType& m_A;
};


// ********** Partial specialization for complex matrices **********

template <typename MatrixType>
class MatrixSquareRoot<MatrixType, 1>
{
  public:

    MatrixSquareRoot(const MatrixType& A) 
      : m_A(A) 
    {  
      eigen_assert(A.rows() == A.cols());
    }
  
    template <typename ResultType> void compute(ResultType &result)
    {
      // Compute Schur decomposition of m_A
      const ComplexSchur<MatrixType> schurOfA(m_A);  
      const MatrixType& T = schurOfA.matrixT();
      const MatrixType& U = schurOfA.matrixU();
    
      // Compute square root of T
      MatrixType sqrtT;
      MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
    
      // Compute square root of m_A
      result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
    }
    
  private:
    const MatrixType& m_A;
};


/** \ingroup MatrixFunctions_Module
  *
  * \brief Proxy for the matrix square root of some matrix (expression).
  *
  * \tparam Derived  Type of the argument to the matrix square root.
  *
  * This class holds the argument to the matrix square root until it
  * is assigned or evaluated for some other reason (so the argument
  * should not be changed in the meantime). It is the return type of
  * MatrixBase::sqrt() and most of the time this is the only way it is
  * used.
  */
template<typename Derived> class MatrixSquareRootReturnValue
: public ReturnByValue<MatrixSquareRootReturnValue<Derived> >
{
    typedef typename Derived::Index Index;
  public:
    /** \brief Constructor.
      *
      * \param[in]  src  %Matrix (expression) forming the argument of the
      * matrix square root.
      */
    MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { }

    /** \brief Compute the matrix square root.
      *
      * \param[out]  result  the matrix square root of \p src in the
      * constructor.
      */
    template <typename ResultType>
    inline void evalTo(ResultType& result) const
    {
      const typename Derived::PlainObject srcEvaluated = m_src.eval();
      MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
      me.compute(result);
    }

    Index rows() const { return m_src.rows(); }
    Index cols() const { return m_src.cols(); }

  protected:
    const Derived& m_src;
  private:
    MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&);
};

namespace internal {
template<typename Derived>
struct traits<MatrixSquareRootReturnValue<Derived> >
{
  typedef typename Derived::PlainObject ReturnType;
};
}

template <typename Derived>
const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const
{
  eigen_assert(rows() == cols());
  return MatrixSquareRootReturnValue<Derived>(derived());
}

} // end namespace Eigen

#endif // EIGEN_MATRIX_FUNCTION