LevenbergMarquardt.h 21.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
// -*- coding: utf-8
// vim: set fileencoding=utf-8

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_LEVENBERGMARQUARDT__H
#define EIGEN_LEVENBERGMARQUARDT__H

namespace Eigen { 

namespace LevenbergMarquardtSpace {
    enum Status {
        NotStarted = -2,
        Running = -1,
        ImproperInputParameters = 0,
        RelativeReductionTooSmall = 1,
        RelativeErrorTooSmall = 2,
        RelativeErrorAndReductionTooSmall = 3,
        CosinusTooSmall = 4,
        TooManyFunctionEvaluation = 5,
        FtolTooSmall = 6,
        XtolTooSmall = 7,
        GtolTooSmall = 8,
        UserAsked = 9
    };
}



/**
  * \ingroup NonLinearOptimization_Module
  * \brief Performs non linear optimization over a non-linear function,
  * using a variant of the Levenberg Marquardt algorithm.
  *
  * Check wikipedia for more information.
  * http://en.wikipedia.org/wiki/Levenberg%E2%80%93Marquardt_algorithm
  */
template<typename FunctorType, typename Scalar=double>
class LevenbergMarquardt
{
public:
    LevenbergMarquardt(FunctorType &_functor)
        : functor(_functor) { nfev = njev = iter = 0;  fnorm = gnorm = 0.; useExternalScaling=false; }

    typedef DenseIndex Index;

    struct Parameters {
        Parameters()
            : factor(Scalar(100.))
            , maxfev(400)
            , ftol(std::sqrt(NumTraits<Scalar>::epsilon()))
            , xtol(std::sqrt(NumTraits<Scalar>::epsilon()))
            , gtol(Scalar(0.))
            , epsfcn(Scalar(0.)) {}
        Scalar factor;
        Index maxfev;   // maximum number of function evaluation
        Scalar ftol;
        Scalar xtol;
        Scalar gtol;
        Scalar epsfcn;
    };

    typedef Matrix< Scalar, Dynamic, 1 > FVectorType;
    typedef Matrix< Scalar, Dynamic, Dynamic > JacobianType;

    LevenbergMarquardtSpace::Status lmder1(
            FVectorType &x,
            const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
            );

    LevenbergMarquardtSpace::Status minimize(FVectorType &x);
    LevenbergMarquardtSpace::Status minimizeInit(FVectorType &x);
    LevenbergMarquardtSpace::Status minimizeOneStep(FVectorType &x);

    static LevenbergMarquardtSpace::Status lmdif1(
            FunctorType &functor,
            FVectorType &x,
            Index *nfev,
            const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
            );

    LevenbergMarquardtSpace::Status lmstr1(
            FVectorType  &x,
            const Scalar tol = std::sqrt(NumTraits<Scalar>::epsilon())
            );

    LevenbergMarquardtSpace::Status minimizeOptimumStorage(FVectorType  &x);
    LevenbergMarquardtSpace::Status minimizeOptimumStorageInit(FVectorType  &x);
    LevenbergMarquardtSpace::Status minimizeOptimumStorageOneStep(FVectorType  &x);

    void resetParameters(void) { parameters = Parameters(); }

    Parameters parameters;
    FVectorType  fvec, qtf, diag;
    JacobianType fjac;
    PermutationMatrix<Dynamic,Dynamic> permutation;
    Index nfev;
    Index njev;
    Index iter;
    Scalar fnorm, gnorm;
    bool useExternalScaling; 

    Scalar lm_param(void) { return par; }
private:
    FunctorType &functor;
    Index n;
    Index m;
    FVectorType wa1, wa2, wa3, wa4;

    Scalar par, sum;
    Scalar temp, temp1, temp2;
    Scalar delta;
    Scalar ratio;
    Scalar pnorm, xnorm, fnorm1, actred, dirder, prered;

    LevenbergMarquardt& operator=(const LevenbergMarquardt&);
};

template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType,Scalar>::lmder1(
        FVectorType  &x,
        const Scalar tol
        )
{
    n = x.size();
    m = functor.values();

    /* check the input parameters for errors. */
    if (n <= 0 || m < n || tol < 0.)
        return LevenbergMarquardtSpace::ImproperInputParameters;

    resetParameters();
    parameters.ftol = tol;
    parameters.xtol = tol;
    parameters.maxfev = 100*(n+1);

    return minimize(x);
}


template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType,Scalar>::minimize(FVectorType  &x)
{
    LevenbergMarquardtSpace::Status status = minimizeInit(x);
    if (status==LevenbergMarquardtSpace::ImproperInputParameters)
        return status;
    do {
        status = minimizeOneStep(x);
    } while (status==LevenbergMarquardtSpace::Running);
    return status;
}

template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeInit(FVectorType  &x)
{
    n = x.size();
    m = functor.values();

    wa1.resize(n); wa2.resize(n); wa3.resize(n);
    wa4.resize(m);
    fvec.resize(m);
    fjac.resize(m, n);
    if (!useExternalScaling)
        diag.resize(n);
    eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
    qtf.resize(n);

    /* Function Body */
    nfev = 0;
    njev = 0;

    /*     check the input parameters for errors. */
    if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
        return LevenbergMarquardtSpace::ImproperInputParameters;

    if (useExternalScaling)
        for (Index j = 0; j < n; ++j)
            if (diag[j] <= 0.)
                return LevenbergMarquardtSpace::ImproperInputParameters;

    /*     evaluate the function at the starting point */
    /*     and calculate its norm. */
    nfev = 1;
    if ( functor(x, fvec) < 0)
        return LevenbergMarquardtSpace::UserAsked;
    fnorm = fvec.stableNorm();

    /*     initialize levenberg-marquardt parameter and iteration counter. */
    par = 0.;
    iter = 1;

    return LevenbergMarquardtSpace::NotStarted;
}

template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeOneStep(FVectorType  &x)
{
    using std::abs;
    using std::sqrt;
    
    eigen_assert(x.size()==n); // check the caller is not cheating us

    /* calculate the jacobian matrix. */
    Index df_ret = functor.df(x, fjac);
    if (df_ret<0)
        return LevenbergMarquardtSpace::UserAsked;
    if (df_ret>0)
        // numerical diff, we evaluated the function df_ret times
        nfev += df_ret;
    else njev++;

    /* compute the qr factorization of the jacobian. */
    wa2 = fjac.colwise().blueNorm();
    ColPivHouseholderQR<JacobianType> qrfac(fjac);
    fjac = qrfac.matrixQR();
    permutation = qrfac.colsPermutation();

    /* on the first iteration and if external scaling is not used, scale according */
    /* to the norms of the columns of the initial jacobian. */
    if (iter == 1) {
        if (!useExternalScaling)
            for (Index j = 0; j < n; ++j)
                diag[j] = (wa2[j]==0.)? 1. : wa2[j];

        /* on the first iteration, calculate the norm of the scaled x */
        /* and initialize the step bound delta. */
        xnorm = diag.cwiseProduct(x).stableNorm();
        delta = parameters.factor * xnorm;
        if (delta == 0.)
            delta = parameters.factor;
    }

    /* form (q transpose)*fvec and store the first n components in */
    /* qtf. */
    wa4 = fvec;
    wa4.applyOnTheLeft(qrfac.householderQ().adjoint());
    qtf = wa4.head(n);

    /* compute the norm of the scaled gradient. */
    gnorm = 0.;
    if (fnorm != 0.)
        for (Index j = 0; j < n; ++j)
            if (wa2[permutation.indices()[j]] != 0.)
                gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));

    /* test for convergence of the gradient norm. */
    if (gnorm <= parameters.gtol)
        return LevenbergMarquardtSpace::CosinusTooSmall;

    /* rescale if necessary. */
    if (!useExternalScaling)
        diag = diag.cwiseMax(wa2);

    do {

        /* determine the levenberg-marquardt parameter. */
        internal::lmpar2<Scalar>(qrfac, diag, qtf, delta, par, wa1);

        /* store the direction p and x + p. calculate the norm of p. */
        wa1 = -wa1;
        wa2 = x + wa1;
        pnorm = diag.cwiseProduct(wa1).stableNorm();

        /* on the first iteration, adjust the initial step bound. */
        if (iter == 1)
            delta = (std::min)(delta,pnorm);

        /* evaluate the function at x + p and calculate its norm. */
        if ( functor(wa2, wa4) < 0)
            return LevenbergMarquardtSpace::UserAsked;
        ++nfev;
        fnorm1 = wa4.stableNorm();

        /* compute the scaled actual reduction. */
        actred = -1.;
        if (Scalar(.1) * fnorm1 < fnorm)
            actred = 1. - numext::abs2(fnorm1 / fnorm);

        /* compute the scaled predicted reduction and */
        /* the scaled directional derivative. */
        wa3 = fjac.template triangularView<Upper>() * (qrfac.colsPermutation().inverse() *wa1);
        temp1 = numext::abs2(wa3.stableNorm() / fnorm);
        temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
        prered = temp1 + temp2 / Scalar(.5);
        dirder = -(temp1 + temp2);

        /* compute the ratio of the actual to the predicted */
        /* reduction. */
        ratio = 0.;
        if (prered != 0.)
            ratio = actred / prered;

        /* update the step bound. */
        if (ratio <= Scalar(.25)) {
            if (actred >= 0.)
                temp = Scalar(.5);
            if (actred < 0.)
                temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
            if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
                temp = Scalar(.1);
            /* Computing MIN */
            delta = temp * (std::min)(delta, pnorm / Scalar(.1));
            par /= temp;
        } else if (!(par != 0. && ratio < Scalar(.75))) {
            delta = pnorm / Scalar(.5);
            par = Scalar(.5) * par;
        }

        /* test for successful iteration. */
        if (ratio >= Scalar(1e-4)) {
            /* successful iteration. update x, fvec, and their norms. */
            x = wa2;
            wa2 = diag.cwiseProduct(x);
            fvec = wa4;
            xnorm = wa2.stableNorm();
            fnorm = fnorm1;
            ++iter;
        }

        /* tests for convergence. */
        if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
            return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
        if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
            return LevenbergMarquardtSpace::RelativeReductionTooSmall;
        if (delta <= parameters.xtol * xnorm)
            return LevenbergMarquardtSpace::RelativeErrorTooSmall;

        /* tests for termination and stringent tolerances. */
        if (nfev >= parameters.maxfev)
            return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
        if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
            return LevenbergMarquardtSpace::FtolTooSmall;
        if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
            return LevenbergMarquardtSpace::XtolTooSmall;
        if (gnorm <= NumTraits<Scalar>::epsilon())
            return LevenbergMarquardtSpace::GtolTooSmall;

    } while (ratio < Scalar(1e-4));

    return LevenbergMarquardtSpace::Running;
}

template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType,Scalar>::lmstr1(
        FVectorType  &x,
        const Scalar tol
        )
{
    n = x.size();
    m = functor.values();

    /* check the input parameters for errors. */
    if (n <= 0 || m < n || tol < 0.)
        return LevenbergMarquardtSpace::ImproperInputParameters;

    resetParameters();
    parameters.ftol = tol;
    parameters.xtol = tol;
    parameters.maxfev = 100*(n+1);

    return minimizeOptimumStorage(x);
}

template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageInit(FVectorType  &x)
{
    n = x.size();
    m = functor.values();

    wa1.resize(n); wa2.resize(n); wa3.resize(n);
    wa4.resize(m);
    fvec.resize(m);
    // Only R is stored in fjac. Q is only used to compute 'qtf', which is
    // Q.transpose()*rhs. qtf will be updated using givens rotation,
    // instead of storing them in Q.
    // The purpose it to only use a nxn matrix, instead of mxn here, so
    // that we can handle cases where m>>n :
    fjac.resize(n, n);
    if (!useExternalScaling)
        diag.resize(n);
    eigen_assert( (!useExternalScaling || diag.size()==n) || "When useExternalScaling is set, the caller must provide a valid 'diag'");
    qtf.resize(n);

    /* Function Body */
    nfev = 0;
    njev = 0;

    /*     check the input parameters for errors. */
    if (n <= 0 || m < n || parameters.ftol < 0. || parameters.xtol < 0. || parameters.gtol < 0. || parameters.maxfev <= 0 || parameters.factor <= 0.)
        return LevenbergMarquardtSpace::ImproperInputParameters;

    if (useExternalScaling)
        for (Index j = 0; j < n; ++j)
            if (diag[j] <= 0.)
                return LevenbergMarquardtSpace::ImproperInputParameters;

    /*     evaluate the function at the starting point */
    /*     and calculate its norm. */
    nfev = 1;
    if ( functor(x, fvec) < 0)
        return LevenbergMarquardtSpace::UserAsked;
    fnorm = fvec.stableNorm();

    /*     initialize levenberg-marquardt parameter and iteration counter. */
    par = 0.;
    iter = 1;

    return LevenbergMarquardtSpace::NotStarted;
}


template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorageOneStep(FVectorType  &x)
{
    using std::abs;
    using std::sqrt;
    
    eigen_assert(x.size()==n); // check the caller is not cheating us

    Index i, j;
    bool sing;

    /* compute the qr factorization of the jacobian matrix */
    /* calculated one row at a time, while simultaneously */
    /* forming (q transpose)*fvec and storing the first */
    /* n components in qtf. */
    qtf.fill(0.);
    fjac.fill(0.);
    Index rownb = 2;
    for (i = 0; i < m; ++i) {
        if (functor.df(x, wa3, rownb) < 0) return LevenbergMarquardtSpace::UserAsked;
        internal::rwupdt<Scalar>(fjac, wa3, qtf, fvec[i]);
        ++rownb;
    }
    ++njev;

    /* if the jacobian is rank deficient, call qrfac to */
    /* reorder its columns and update the components of qtf. */
    sing = false;
    for (j = 0; j < n; ++j) {
        if (fjac(j,j) == 0.)
            sing = true;
        wa2[j] = fjac.col(j).head(j).stableNorm();
    }
    permutation.setIdentity(n);
    if (sing) {
        wa2 = fjac.colwise().blueNorm();
        // TODO We have no unit test covering this code path, do not modify
        // until it is carefully tested
        ColPivHouseholderQR<JacobianType> qrfac(fjac);
        fjac = qrfac.matrixQR();
        wa1 = fjac.diagonal();
        fjac.diagonal() = qrfac.hCoeffs();
        permutation = qrfac.colsPermutation();
        // TODO : avoid this:
        for(Index ii=0; ii< fjac.cols(); ii++) fjac.col(ii).segment(ii+1, fjac.rows()-ii-1) *= fjac(ii,ii); // rescale vectors

        for (j = 0; j < n; ++j) {
            if (fjac(j,j) != 0.) {
                sum = 0.;
                for (i = j; i < n; ++i)
                    sum += fjac(i,j) * qtf[i];
                temp = -sum / fjac(j,j);
                for (i = j; i < n; ++i)
                    qtf[i] += fjac(i,j) * temp;
            }
            fjac(j,j) = wa1[j];
        }
    }

    /* on the first iteration and if external scaling is not used, scale according */
    /* to the norms of the columns of the initial jacobian. */
    if (iter == 1) {
        if (!useExternalScaling)
            for (j = 0; j < n; ++j)
                diag[j] = (wa2[j]==0.)? 1. : wa2[j];

        /* on the first iteration, calculate the norm of the scaled x */
        /* and initialize the step bound delta. */
        xnorm = diag.cwiseProduct(x).stableNorm();
        delta = parameters.factor * xnorm;
        if (delta == 0.)
            delta = parameters.factor;
    }

    /* compute the norm of the scaled gradient. */
    gnorm = 0.;
    if (fnorm != 0.)
        for (j = 0; j < n; ++j)
            if (wa2[permutation.indices()[j]] != 0.)
                gnorm = (std::max)(gnorm, abs( fjac.col(j).head(j+1).dot(qtf.head(j+1)/fnorm) / wa2[permutation.indices()[j]]));

    /* test for convergence of the gradient norm. */
    if (gnorm <= parameters.gtol)
        return LevenbergMarquardtSpace::CosinusTooSmall;

    /* rescale if necessary. */
    if (!useExternalScaling)
        diag = diag.cwiseMax(wa2);

    do {

        /* determine the levenberg-marquardt parameter. */
        internal::lmpar<Scalar>(fjac, permutation.indices(), diag, qtf, delta, par, wa1);

        /* store the direction p and x + p. calculate the norm of p. */
        wa1 = -wa1;
        wa2 = x + wa1;
        pnorm = diag.cwiseProduct(wa1).stableNorm();

        /* on the first iteration, adjust the initial step bound. */
        if (iter == 1)
            delta = (std::min)(delta,pnorm);

        /* evaluate the function at x + p and calculate its norm. */
        if ( functor(wa2, wa4) < 0)
            return LevenbergMarquardtSpace::UserAsked;
        ++nfev;
        fnorm1 = wa4.stableNorm();

        /* compute the scaled actual reduction. */
        actred = -1.;
        if (Scalar(.1) * fnorm1 < fnorm)
            actred = 1. - numext::abs2(fnorm1 / fnorm);

        /* compute the scaled predicted reduction and */
        /* the scaled directional derivative. */
        wa3 = fjac.topLeftCorner(n,n).template triangularView<Upper>() * (permutation.inverse() * wa1);
        temp1 = numext::abs2(wa3.stableNorm() / fnorm);
        temp2 = numext::abs2(sqrt(par) * pnorm / fnorm);
        prered = temp1 + temp2 / Scalar(.5);
        dirder = -(temp1 + temp2);

        /* compute the ratio of the actual to the predicted */
        /* reduction. */
        ratio = 0.;
        if (prered != 0.)
            ratio = actred / prered;

        /* update the step bound. */
        if (ratio <= Scalar(.25)) {
            if (actred >= 0.)
                temp = Scalar(.5);
            if (actred < 0.)
                temp = Scalar(.5) * dirder / (dirder + Scalar(.5) * actred);
            if (Scalar(.1) * fnorm1 >= fnorm || temp < Scalar(.1))
                temp = Scalar(.1);
            /* Computing MIN */
            delta = temp * (std::min)(delta, pnorm / Scalar(.1));
            par /= temp;
        } else if (!(par != 0. && ratio < Scalar(.75))) {
            delta = pnorm / Scalar(.5);
            par = Scalar(.5) * par;
        }

        /* test for successful iteration. */
        if (ratio >= Scalar(1e-4)) {
            /* successful iteration. update x, fvec, and their norms. */
            x = wa2;
            wa2 = diag.cwiseProduct(x);
            fvec = wa4;
            xnorm = wa2.stableNorm();
            fnorm = fnorm1;
            ++iter;
        }

        /* tests for convergence. */
        if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1. && delta <= parameters.xtol * xnorm)
            return LevenbergMarquardtSpace::RelativeErrorAndReductionTooSmall;
        if (abs(actred) <= parameters.ftol && prered <= parameters.ftol && Scalar(.5) * ratio <= 1.)
            return LevenbergMarquardtSpace::RelativeReductionTooSmall;
        if (delta <= parameters.xtol * xnorm)
            return LevenbergMarquardtSpace::RelativeErrorTooSmall;

        /* tests for termination and stringent tolerances. */
        if (nfev >= parameters.maxfev)
            return LevenbergMarquardtSpace::TooManyFunctionEvaluation;
        if (abs(actred) <= NumTraits<Scalar>::epsilon() && prered <= NumTraits<Scalar>::epsilon() && Scalar(.5) * ratio <= 1.)
            return LevenbergMarquardtSpace::FtolTooSmall;
        if (delta <= NumTraits<Scalar>::epsilon() * xnorm)
            return LevenbergMarquardtSpace::XtolTooSmall;
        if (gnorm <= NumTraits<Scalar>::epsilon())
            return LevenbergMarquardtSpace::GtolTooSmall;

    } while (ratio < Scalar(1e-4));

    return LevenbergMarquardtSpace::Running;
}

template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType,Scalar>::minimizeOptimumStorage(FVectorType  &x)
{
    LevenbergMarquardtSpace::Status status = minimizeOptimumStorageInit(x);
    if (status==LevenbergMarquardtSpace::ImproperInputParameters)
        return status;
    do {
        status = minimizeOptimumStorageOneStep(x);
    } while (status==LevenbergMarquardtSpace::Running);
    return status;
}

template<typename FunctorType, typename Scalar>
LevenbergMarquardtSpace::Status
LevenbergMarquardt<FunctorType,Scalar>::lmdif1(
        FunctorType &functor,
        FVectorType  &x,
        Index *nfev,
        const Scalar tol
        )
{
    Index n = x.size();
    Index m = functor.values();

    /* check the input parameters for errors. */
    if (n <= 0 || m < n || tol < 0.)
        return LevenbergMarquardtSpace::ImproperInputParameters;

    NumericalDiff<FunctorType> numDiff(functor);
    // embedded LevenbergMarquardt
    LevenbergMarquardt<NumericalDiff<FunctorType>, Scalar > lm(numDiff);
    lm.parameters.ftol = tol;
    lm.parameters.xtol = tol;
    lm.parameters.maxfev = 200*(n+1);

    LevenbergMarquardtSpace::Status info = LevenbergMarquardtSpace::Status(lm.minimize(x));
    if (nfev)
        * nfev = lm.nfev;
    return info;
}

} // end namespace Eigen

#endif // EIGEN_LEVENBERGMARQUARDT__H

//vim: ai ts=4 sts=4 et sw=4