BDCSVD.h 26.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
// 
// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD"
// research report written by Ming Gu and Stanley C.Eisenstat
// The code variable names correspond to the names they used in their 
// report
//
// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
//
// Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.

#ifndef EIGEN_BDCSVD_H
#define EIGEN_BDCSVD_H

#define EPSILON 0.0000000000000001

#define ALGOSWAP 32

namespace Eigen {
/** \ingroup SVD_Module
 *
 *
 * \class BDCSVD
 *
 * \brief class Bidiagonal Divide and Conquer SVD
 *
 * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
 * We plan to have a very similar interface to JacobiSVD on this class.
 * It should be used to speed up the calcul of SVD for big matrices. 
 */
template<typename _MatrixType> 
class BDCSVD : public SVDBase<_MatrixType>
{
  typedef SVDBase<_MatrixType> Base;
    
public:
  using Base::rows;
  using Base::cols;
  
  typedef _MatrixType MatrixType;
  typedef typename MatrixType::Scalar Scalar;
  typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
  typedef typename MatrixType::Index Index;
  enum {
    RowsAtCompileTime = MatrixType::RowsAtCompileTime, 
    ColsAtCompileTime = MatrixType::ColsAtCompileTime, 
    DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), 
    MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 
    MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, 
    MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), 
    MatrixOptions = MatrixType::Options
  };

  typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, 
		 MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime>
  MatrixUType;
  typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, 
		 MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime>
  MatrixVType;
  typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
  typedef typename internal::plain_row_type<MatrixType>::type RowType;
  typedef typename internal::plain_col_type<MatrixType>::type ColType;
  typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX;
  typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr;
  typedef Matrix<RealScalar, Dynamic, 1> VectorType;

  /** \brief Default Constructor.
   *
   * The default constructor is useful in cases in which the user intends to
   * perform decompositions via BDCSVD::compute(const MatrixType&).
   */
  BDCSVD()
    : SVDBase<_MatrixType>::SVDBase(), 
      algoswap(ALGOSWAP)
  {}


  /** \brief Default Constructor with memory preallocation
   *
   * Like the default constructor but with preallocation of the internal data
   * according to the specified problem size.
   * \sa BDCSVD()
   */
  BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
    : SVDBase<_MatrixType>::SVDBase(), 
      algoswap(ALGOSWAP)
  {
    allocate(rows, cols, computationOptions);
  }

  /** \brief Constructor performing the decomposition of given matrix.
   *
   * \param matrix the matrix to decompose
   * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
   *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, 
   *                           #ComputeFullV, #ComputeThinV.
   *
   * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
   * available with the (non - default) FullPivHouseholderQR preconditioner.
   */
  BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
    : SVDBase<_MatrixType>::SVDBase(), 
      algoswap(ALGOSWAP)
  {
    compute(matrix, computationOptions);
  }

  ~BDCSVD() 
  {
  }
  /** \brief Method performing the decomposition of given matrix using custom options.
   *
   * \param matrix the matrix to decompose
   * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed.
   *                           By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, 
   *                           #ComputeFullV, #ComputeThinV.
   *
   * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not
   * available with the (non - default) FullPivHouseholderQR preconditioner.
   */
  SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions);

  /** \brief Method performing the decomposition of given matrix using current options.
   *
   * \param matrix the matrix to decompose
   *
   * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int).
   */
  SVDBase<MatrixType>& compute(const MatrixType& matrix)
  {
    return compute(matrix, this->m_computationOptions);
  }

  void setSwitchSize(int s) 
  {
    eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 4");
    algoswap = s;
  }


  /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
   *
   * \param b the right - hand - side of the equation to solve.
   *
   * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
   *
   * \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving.
   * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
   */
  template<typename Rhs>
  inline const internal::solve_retval<BDCSVD, Rhs>
  solve(const MatrixBase<Rhs>& b) const
  {
    eigen_assert(this->m_isInitialized && "BDCSVD is not initialized.");
    eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() && 
		 "BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
    return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived());
  }

 
  const MatrixUType& matrixU() const
  {
    eigen_assert(this->m_isInitialized && "SVD is not initialized.");
    if (isTranspose){
      eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?");
      return this->m_matrixV;
    }
    else 
    {
      eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
      return this->m_matrixU;
    }
     
  }


  const MatrixVType& matrixV() const
  {
    eigen_assert(this->m_isInitialized && "SVD is not initialized.");
    if (isTranspose){
      eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?");
      return this->m_matrixU;
    }
    else
    {
      eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
      return this->m_matrixV;
    }
  }
 
private:
  void allocate(Index rows, Index cols, unsigned int computationOptions);
  void divide (Index firstCol, Index lastCol, Index firstRowW, 
	       Index firstColW, Index shift);
  void deflation43(Index firstCol, Index shift, Index i, Index size);
  void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
  void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
  void copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX houseHolderV);

protected:
  MatrixXr m_naiveU, m_naiveV;
  MatrixXr m_computed;
  Index nRec;
  int algoswap;
  bool isTranspose, compU, compV;
  
}; //end class BDCSVD


// Methode to allocate ans initialize matrix and attributs
template<typename MatrixType>
void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
  isTranspose = (cols > rows);
  if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return;
  m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
  if (isTranspose){
    compU = this->computeU();
    compV = this->computeV();    
  } 
  else
  {
    compV = this->computeU();
    compU = this->computeV();   
  }
  if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 );
  else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 );
  
  if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize);
  

  //should be changed for a cleaner implementation
  if (isTranspose){
    bool aux;
    if (this->computeU()||this->computeV()){
      aux = this->m_computeFullU;
      this->m_computeFullU = this->m_computeFullV;
      this->m_computeFullV = aux;
      aux = this->m_computeThinU;
      this->m_computeThinU = this->m_computeThinV;
      this->m_computeThinV = aux;
    } 
  }
}// end allocate

// Methode which compute the BDCSVD for the int
template<>
SVDBase<Matrix<int, Dynamic, Dynamic> >&
BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
  allocate(matrix.rows(), matrix.cols(), computationOptions);
  this->m_nonzeroSingularValues = 0;
  m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
  for (int i=0; i<this->m_diagSize; i++)   {
    this->m_singularValues.coeffRef(i) = 0;
  }
  if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows());
  if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols()); 
  this->m_isInitialized = true;
  return *this;
}


// Methode which compute the BDCSVD
template<typename MatrixType>
SVDBase<MatrixType>&
BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions) 
{
  allocate(matrix.rows(), matrix.cols(), computationOptions);
  using std::abs;

  //**** step 1 Bidiagonalization  isTranspose = (matrix.cols()>matrix.rows()) ;
  MatrixType copy;
  if (isTranspose) copy = matrix.adjoint();
  else copy = matrix;
  
  internal::UpperBidiagonalization<MatrixX > bid(copy);

  //**** step 2 Divide
  // this is ugly and has to be redone (care of complex cast)
  MatrixXr temp;
  temp = bid.bidiagonal().toDenseMatrix().transpose();
  m_computed.setZero();
  for (int i=0; i<this->m_diagSize - 1; i++)   {
    m_computed(i, i) = temp(i, i);
    m_computed(i + 1, i) = temp(i + 1, i);
  }
  m_computed(this->m_diagSize - 1, this->m_diagSize - 1) = temp(this->m_diagSize - 1, this->m_diagSize - 1);
  divide(0, this->m_diagSize - 1, 0, 0, 0);

  //**** step 3 copy
  for (int i=0; i<this->m_diagSize; i++)   {
    RealScalar a = abs(m_computed.coeff(i, i));
    this->m_singularValues.coeffRef(i) = a;
    if (a == 0){
      this->m_nonzeroSingularValues = i;
      break;
    }
    else  if (i == this->m_diagSize - 1)
    {
      this->m_nonzeroSingularValues = i + 1;
      break;
    }
  }
  copyUV(m_naiveV, m_naiveU, bid.householderU(), bid.householderV());
  this->m_isInitialized = true;
  return *this;
}// end compute


template<typename MatrixType>
void BDCSVD<MatrixType>::copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX householderV){
  if (this->computeU()){
    MatrixX temp = MatrixX::Zero(naiveU.rows(), naiveU.cols());
    temp.real() = naiveU;
    if (this->m_computeThinU){
      this->m_matrixU = MatrixX::Identity(householderU.cols(), this->m_nonzeroSingularValues );
      this->m_matrixU.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues) = 
	temp.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues);
      this->m_matrixU = householderU * this->m_matrixU ;
    }
    else
    {
      this->m_matrixU = MatrixX::Identity(householderU.cols(), householderU.cols());
      this->m_matrixU.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
      this->m_matrixU = householderU * this->m_matrixU ;
    }
  }
  if (this->computeV()){
    MatrixX temp = MatrixX::Zero(naiveV.rows(), naiveV.cols());
    temp.real() = naiveV;
    if (this->m_computeThinV){
      this->m_matrixV = MatrixX::Identity(householderV.cols(),this->m_nonzeroSingularValues );
      this->m_matrixV.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues) = 
	temp.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues);
      this->m_matrixV = householderV * this->m_matrixV ;
    }
    else  
    {
      this->m_matrixV = MatrixX::Identity(householderV.cols(), householderV.cols());
      this->m_matrixV.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize);
      this->m_matrixV = householderV * this->m_matrixV;
    }
  }
}

// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the 
// place of the submatrix we are currently working on.

//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU;
//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; 
// lastCol + 1 - firstCol is the size of the submatrix.
//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W)
//@param firstRowW : Same as firstRowW with the column.
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix 
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
template<typename MatrixType>
void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, 
				 Index firstColW, Index shift)
{
  // requires nbRows = nbCols + 1;
  using std::pow;
  using std::sqrt;
  using std::abs;
  const Index n = lastCol - firstCol + 1;
  const Index k = n/2;
  RealScalar alphaK;
  RealScalar betaK; 
  RealScalar r0; 
  RealScalar lambda, phi, c0, s0;
  MatrixXr l, f;
  // We use the other algorithm which is more efficient for small 
  // matrices.
  if (n < algoswap){
    JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), 
			  ComputeFullU | (ComputeFullV * compV)) ;
    if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU();
    else 
    {
      m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0);
      m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n);
    }
    if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV();
    m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
    for (int i=0; i<n; i++)
    {
      m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i);
    }
    return;
  }
  // We use the divide and conquer algorithm
  alphaK =  m_computed(firstCol + k, firstCol + k);
  betaK = m_computed(firstCol + k + 1, firstCol + k);
  // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices
  // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the 
  // right submatrix before the left one. 
  divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
  divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
  if (compU)
  {
    lambda = m_naiveU(firstCol + k, firstCol + k);
    phi = m_naiveU(firstCol + k + 1, lastCol + 1);
  } 
  else 
  {
    lambda = m_naiveU(1, firstCol + k);
    phi = m_naiveU(0, lastCol + 1);
  }
  r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda))
	    + abs(betaK * phi) * abs(betaK * phi));
  if (compU)
  {
    l = m_naiveU.row(firstCol + k).segment(firstCol, k);
    f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
  } 
  else 
  {
    l = m_naiveU.row(1).segment(firstCol, k);
    f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
  }
  if (compV) m_naiveV(firstRowW+k, firstColW) = 1;
  if (r0 == 0)
  {
    c0 = 1;
    s0 = 0;
  }
  else
  {
    c0 = alphaK * lambda / r0;
    s0 = betaK * phi / r0;
  }
  if (compU)
  {
    MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));     
    // we shiftW Q1 to the right
    for (Index i = firstCol + k - 1; i >= firstCol; i--) 
    {
      m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1);
    }
    // we shift q1 at the left with a factor c0
    m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0);
    // last column = q1 * - s0
    m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0));
    // first column = q2 * s0
    m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) << 
      m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0; 
    // q2 *= c0
    m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; 
  } 
  else 
  {
    RealScalar q1 = (m_naiveU(0, firstCol + k));
    // we shift Q1 to the right
    for (Index i = firstCol + k - 1; i >= firstCol; i--) 
    {
      m_naiveU(0, i + 1) = m_naiveU(0, i);
    }
    // we shift q1 at the left with a factor c0
    m_naiveU(0, firstCol) = (q1 * c0);
    // last column = q1 * - s0
    m_naiveU(0, lastCol + 1) = (q1 * ( - s0));
    // first column = q2 * s0
    m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; 
    // q2 *= c0
    m_naiveU(1, lastCol + 1) *= c0;
    m_naiveU.row(1).segment(firstCol + 1, k).setZero();
    m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
  }
  m_computed(firstCol + shift, firstCol + shift) = r0;
  m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real();
  m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real();


  // the line below do the deflation of the matrix for the third part of the algorithm
  // Here the deflation is commented because the third part of the algorithm is not implemented
  // the third part of the algorithm is a fast SVD on the matrix m_computed which works thanks to the deflation

  deflation(firstCol, lastCol, k, firstRowW, firstColW, shift);

  // Third part of the algorithm, since the real third part of the algorithm is not implemeted we use a JacobiSVD
  JacobiSVD<MatrixXr> res= JacobiSVD<MatrixXr>(m_computed.block(firstCol + shift, firstCol +shift, n + 1, n), 
					       ComputeFullU | (ComputeFullV * compV)) ;
  if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= res.matrixU();
  else m_naiveU.block(0, firstCol, 2, n + 1) *= res.matrixU();
  
  if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= res.matrixV();
  m_computed.block(firstCol + shift, firstCol + shift, n, n) << MatrixXr::Zero(n, n);
  for (int i=0; i<n; i++)
    m_computed(firstCol + shift + i, firstCol + shift +i) = res.singularValues().coeffRef(i);
  // end of the third part


}// end divide


// page 12_13
// i >= 1, di almost null and zi non null.
// We use a rotation to zero out zi applied to the left of M
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){
  using std::abs;
  using std::sqrt;
  using std::pow;
  RealScalar c = m_computed(firstCol + shift, firstCol + shift);
  RealScalar s = m_computed(i, firstCol + shift);
  RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
  if (r == 0){
    m_computed(i, i)=0;
    return;
  }
  c/=r;
  s/=r;
  m_computed(firstCol + shift, firstCol + shift) = r;  
  m_computed(i, firstCol + shift) = 0;
  m_computed(i, i) = 0;
  if (compU){
    m_naiveU.col(firstCol).segment(firstCol,size) = 
      c * m_naiveU.col(firstCol).segment(firstCol, size) - 
      s * m_naiveU.col(i).segment(firstCol, size) ;

    m_naiveU.col(i).segment(firstCol, size) = 
      (c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) + 
      (s/c) * m_naiveU.col(firstCol).segment(firstCol,size);
  }
}// end deflation 43


// page 13
// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M)
// We apply two rotations to have zj = 0;
template <typename MatrixType>
void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){
  using std::abs;
  using std::sqrt;
  using std::conj;
  using std::pow;
  RealScalar c = m_computed(firstColm, firstColm + j - 1);
  RealScalar s = m_computed(firstColm, firstColm + i - 1);
  RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
  if (r==0){
    m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
    return;
  }
  c/=r;
  s/=r;
  m_computed(firstColm + i, firstColm) = r;  
  m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
  m_computed(firstColm + j, firstColm) = 0;
  if (compU){
    m_naiveU.col(firstColu + i).segment(firstColu, size) = 
      c * m_naiveU.col(firstColu + i).segment(firstColu, size) - 
      s * m_naiveU.col(firstColu + j).segment(firstColu, size) ;

    m_naiveU.col(firstColu + j).segment(firstColu, size) = 
      (c + s*s/c) *  m_naiveU.col(firstColu + j).segment(firstColu, size) + 
      (s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size);
  } 
  if (compV){
    m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) = 
      c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) + 
      s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ;

    m_naiveV.col(firstColW + j).segment(firstRowW, size - 1)  = 
      (c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) - 
      (s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1);
  }
}// end deflation 44



template <typename MatrixType>
void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){
  //condition 4.1
  RealScalar EPS = EPSILON * (std::max<RealScalar>(m_computed(firstCol + shift + 1, firstCol + shift + 1), m_computed(firstCol + k, firstCol + k)));
  const Index length = lastCol + 1 - firstCol;
  if (m_computed(firstCol + shift, firstCol + shift) < EPS){
    m_computed(firstCol + shift, firstCol + shift) = EPS;
  }
  //condition 4.2
  for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){
    if (std::abs(m_computed(i, firstCol + shift)) < EPS){
      m_computed(i, firstCol + shift) = 0;
    }
  }

  //condition 4.3
  for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){
    if (m_computed(i, i) < EPS){
      deflation43(firstCol, shift, i, length);
    }
  }

  //condition 4.4
 
  Index i=firstCol + shift + 1, j=firstCol + shift + k + 1;
  //we stock the final place of each line
  Index *permutation = new Index[length];

  for (Index p =1; p < length; p++) {
    if (i> firstCol + shift + k){
      permutation[p] = j;
      j++;
    } else if (j> lastCol + shift) 
    {
      permutation[p] = i;
      i++;
    }
    else 
    {
      if (m_computed(i, i) < m_computed(j, j)){
        permutation[p] = j;
        j++;
      } 
      else
      {
        permutation[p] = i;
        i++;
      }
    }
  }
  //we do the permutation
  RealScalar aux;
  //we stock the current index of each col
  //and the column of each index
  Index *realInd = new Index[length];
  Index *realCol = new Index[length];
  for (int pos = 0; pos< length; pos++){
    realCol[pos] = pos + firstCol + shift;
    realInd[pos] = pos;
  }
  const Index Zero = firstCol + shift;
  VectorType temp;
  for (int i = 1; i < length - 1; i++){
    const Index I = i + Zero;
    const Index realI = realInd[i];
    const Index j  = permutation[length - i] - Zero;
    const Index J = realCol[j];
    
    //diag displace
    aux = m_computed(I, I); 
    m_computed(I, I) = m_computed(J, J);
    m_computed(J, J) = aux;
    
    //firstrow displace
    aux = m_computed(I, Zero); 
    m_computed(I, Zero) = m_computed(J, Zero);
    m_computed(J, Zero) = aux;

    // change columns
    if (compU) {
      temp = m_naiveU.col(I - shift).segment(firstCol, length + 1);
      m_naiveU.col(I - shift).segment(firstCol, length + 1) << 
        m_naiveU.col(J - shift).segment(firstCol, length + 1);
      m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp;
    } 
    else
    {
      temp = m_naiveU.col(I - shift).segment(0, 2);
      m_naiveU.col(I - shift).segment(0, 2) << 
        m_naiveU.col(J - shift).segment(0, 2);
      m_naiveU.col(J - shift).segment(0, 2) << temp;      
    }
    if (compV) {
      const Index CWI = I + firstColW - Zero;
      const Index CWJ = J + firstColW - Zero;
      temp = m_naiveV.col(CWI).segment(firstRowW, length);
      m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length);
      m_naiveV.col(CWJ).segment(firstRowW, length) << temp;
    }

    //update real pos
    realCol[realI] = J;
    realCol[j] = I;
    realInd[J - Zero] = realI;
    realInd[I - Zero] = j;
  }
  for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){
    if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){
      deflation44(firstCol , 
		  firstCol + shift, 
		  firstRowW, 
		  firstColW, 
		  i - Zero, 
		  i + 1 - Zero, 
		  length);
    }
  }
  delete [] permutation;
  delete [] realInd;
  delete [] realCol;

}//end deflation


namespace internal{

template<typename _MatrixType, typename Rhs>
struct solve_retval<BDCSVD<_MatrixType>, Rhs>
  : solve_retval_base<BDCSVD<_MatrixType>, Rhs>
{
  typedef BDCSVD<_MatrixType> BDCSVDType;
  EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs)

  template<typename Dest> void evalTo(Dest& dst) const
  {
    eigen_assert(rhs().rows() == dec().rows());
    // A = U S V^*
    // So A^{ - 1} = V S^{ - 1} U^*    
    Index diagSize = (std::min)(dec().rows(), dec().cols());
    typename BDCSVDType::SingularValuesType invertedSingVals(diagSize);
    Index nonzeroSingVals = dec().nonzeroSingularValues();
    invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse();
    invertedSingVals.tail(diagSize - nonzeroSingVals).setZero();
    
    dst = dec().matrixV().leftCols(diagSize)
      * invertedSingVals.asDiagonal()
      * dec().matrixU().leftCols(diagSize).adjoint()
      * rhs();	
    return;
  }
};

} //end namespace internal

  /** \svd_module
   *
   * \return the singular value decomposition of \c *this computed by 
   *  BDC Algorithm
   *
   * \sa class BDCSVD
   */
/*
template<typename Derived>
BDCSVD<typename MatrixBase<Derived>::PlainObject>
MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const
{
  return BDCSVD<PlainObject>(*this, computationOptions);
}
*/

} // end namespace Eigen

#endif