ScreenShot.js 17.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
import * as THREE from 'three';

const canvasWidth = 3840;
const canvasHeight = 2160;

const getColor2 = (canvas, data, x, y) => {
    var width = canvas.width;
    var height = canvas.height;
    var index = (y * width + x) * 4;
    //return (data[index] + data[index + 1] + data[index + 2]) / 3;

    return {
        x: data[index],
        y: data[index + 1],
        z: data[index + 2]
    };
};

const getColor = (canvas, data, x, y) => {
    var width = canvas.width;
    var height = canvas.height;
    var index = (y * width + x) * 4;
    return (data[index] + data[index + 1] + data[index + 2]) / 3;
};

// Perform MSAA by averaging neighboring pixel values
const applyFXAA = (canvas, ctx, sampleRadius = 3, scene) => {
    var width = canvas.width;
    var height = canvas.height;
    var imageData = ctx.getImageData(0, 0, width, height);

    const imageDataCopy = new ImageData(new Uint8ClampedArray(imageData.data), imageData.width, imageData.height);
    var pixels = imageData.data;
    var pixelsCopy = imageDataCopy.data;

    var halfRadius = Math.floor(sampleRadius / 2);

    const group = new THREE.Object3D();

    for (var y = halfRadius; y < height - halfRadius; y++) {
        for (var x = halfRadius; x < width - halfRadius; x++) {
            var index = (y * width + x) * 4;

            // 获取周围像素
            var sum = 0;
            var sumCopy = 0;

            var sumx = 0;
            var sumy = 0;
            var sumz = 0;

            var sumCopyx = 0;
            var sumCopyy = 0;
            var sumCopyz = 0;

            for (var dy = -halfRadius; dy <= halfRadius; dy++) {
                for (var dx = -halfRadius; dx <= halfRadius; dx++) {
                    sum += getColor(canvas, pixels, x + dx, y + dy);
                    sumCopy += getColor(canvas, pixelsCopy, x + dx, y + dy);

                    sumx += getColor2(canvas, pixels, x + dx, y + dy).x;
                    sumy += getColor2(canvas, pixels, x + dx, y + dy).y;
                    sumz += getColor2(canvas, pixels, x + dx, y + dy).z;

                    sumCopyx += getColor2(canvas, pixelsCopy, x + dx, y + dy).x;
                    sumCopyy += getColor2(canvas, pixelsCopy, x + dx, y + dy).y;
                    sumCopyz += getColor2(canvas, pixelsCopy, x + dx, y + dy).z;
                }
            }
            const edges = sum / (sampleRadius * sampleRadius);
            const edgesCopy = sumCopy / (sampleRadius * sampleRadius);
            // 根据梯度和阈值应用抗锯齿
            if (
                edgesCopy > 0 &&
                edgesCopy > 255 * 0.3 &&
                pixelsCopy[index] <= 200 &&
                pixelsCopy[index + 1] <= 200 &&
                pixelsCopy[index + 2] <= 200
            ) {
                pixels[index] = sumCopyx / (sampleRadius * sampleRadius);
                pixels[index + 1] = sumCopyy / (sampleRadius * sampleRadius);
                pixels[index + 2] = sumCopyz / (sampleRadius * sampleRadius);
            }
            /*
            const geometry = new THREE.BoxGeometry(1, 1, 1);
            const material = new THREE.MeshBasicMaterial({
                color: new THREE.Color(pixels[index] / 255, pixels[index + 1] / 255, pixels[index + 2] / 255)
            });
            const cube = new THREE.Mesh(geometry, material);
            cube.position.set(x, y, 10);
            group.add(cube);*/
        }
    }
    //scene.add(group);
    ctx.putImageData(imageData, 0, 0);
};

const applyGaussianBlur = (ctx, width, height, radius) => {
    var imageData = ctx.getImageData(0, 0, width, height);
    var pixels = imageData.data;

    var weights = generateGaussianWeights(radius);
    console.log(weights);
    for (var y = 0; y < height; y++) {
        for (var x = 0; x < width; x++) {
            var red = 0,
                green = 0,
                blue = 0;

            for (var i = -radius; i <= radius; i++) {
                for (var j = -radius; j <= radius; j++) {
                    var offsetX = x + j;
                    var offsetY = y + i;

                    if (offsetX >= 0 && offsetX < width && offsetY >= 0 && offsetY < height) {
                        var index = (offsetY * width + offsetX) * 4;
                        var weight = weights[i + radius] * weights[j + radius];

                        red += pixels[index] * weight;
                        green += pixels[index + 1] * weight;
                        blue += pixels[index + 2] * weight;
                    }
                }
            }

            var currentIndex = (y * width + x) * 4;
            pixels[currentIndex] = red;
            pixels[currentIndex + 1] = green;
            pixels[currentIndex + 2] = blue;
        }
    }

    ctx.putImageData(imageData, 0, 0);
};

const generateGaussianWeights = (radius) => {
    var weights = [];
    var sigma = radius / 3.0;

    for (var i = -radius; i <= radius; i++) {
        var weight = Math.exp(-(i * i) / (2 * sigma * sigma));
        weights.push(weight);
    }

    // Normalize the weights
    var sum = weights.reduce((a, b) => a + b, 0);
    weights = weights.map((w) => w / sum);

    return weights;
};

const agenerate2DGaussianKernel2 = (size, sigma) => {
    const kernel = new Array(size);

    const sigmaSquared = sigma * sigma;
    const sigmaRoot = Math.sqrt(2 * Math.PI) * sigma;
    const coefficient = 1 / (sigmaRoot * sigmaRoot);

    const center = (size - 1) / 2;

    let sum = 0;

    for (let i = 0; i < size; i++) {
        kernel[i] = new Array(size);
        for (let j = 0; j < size; j++) {
            const x = i - center;
            const y = j - center;
            const xSquared = x * x;
            const ySquared = y * y;
            kernel[i][j] = coefficient * Math.exp(-(xSquared + ySquared) / (2 * sigmaSquared));
            sum += kernel[i][j];
        }
    }

    // Normalize the kernel
    for (let i = 0; i < size; i++) {
        for (let j = 0; j < size; j++) {
            kernel[i][j] /= sum;
        }
    }

    console.log(kernel);

    return kernel;
};

const generateAveragingKernel = (size) => {
    // Ensure that the size is an odd number
    if (size % 2 === 0) {
        size++;
    }

    // Calculate the center position of the kernel
    const center = Math.floor(size / 2);

    // Initialize the kernel matrix with equal weights
    const kernel = Array.from({ length: size }, () => Array.from({ length: size }, () => 1));

    // Normalize the kernel by dividing each element by the sum of all elements
    const sum = kernel.flat().reduce((acc, val) => acc + val, 0);
    const normalizedKernel = kernel.map((row) => row.map((val) => val / sum));
    console.log(normalizedKernel);
    return normalizedKernel;
};

// Helper function to calculate luma value for a pixel
const calculateLuma = (pixels, index) => {
    return 0.299 * pixels[index] + 0.587 * pixels[index + 1] + 0.114 * pixels[index + 2];
};

const applyGrayscaleCompensation = (ctx, width, height, compensationValue) => {
    // Get the pixel data from the canvas
    var imageData = ctx.getImageData(0, 0, width, height);
    var pixels = imageData.data;

    // Calculate the compensation factor based on the input value
    var compensationFactor = (compensationValue / 8) * 255;

    // Apply grayscale compensation with specified segments
    for (var i = 0; i < pixels.length; i += 4) {
        if (
            pixels[i] > 0 &&
            pixels[i] < 255 &&
            pixels[i + 1] > 0 &&
            pixels[i + 1] < 255 &&
            pixels[i + 2] > 0 &&
            pixels[i + 2] < 255
        ) {
            // Adjust the grayscale value based on the compensation factor

            pixels[i] += compensationFactor;
            pixels[i + 1] += compensationFactor;
            pixels[i + 2] += compensationFactor;
        }
    }

    // Put the modified pixel data back onto the canvas
    ctx.putImageData(imageData, 0, 0);
};

const clamp = (value, min, max) => {
    return Math.min(Math.max(value, min), max);
};

const generate2DGaussianKernel = (size) => {
    var sigma = size / 6; // Adjust the sigma based on kernel size
    var kernel = [];

    for (var i = 0; i < size; i++) {
        var row = [];
        for (var j = 0; j < size; j++) {
            var x = j - Math.floor(size / 2);
            var y = i - Math.floor(size / 2);
            var value = Math.exp(-(x * x + y * y) / (2 * sigma * sigma)) / (2 * Math.PI * sigma * sigma);
            row.push(value);
        }
        kernel.push(row);
    }
    console.log(kernel);
    return kernel;
};

const applyEdgeBlur = (ctx, width, height, kernelSize) => {
    // Get the pixel data from the canvas
    var imageData = ctx.getImageData(0, 0, width, height);
    var pixels = imageData.data;

    // Generate a 2D Gaussian blur kernel of specified size
    var kernel = generate2DGaussianKernel(kernelSize);

    const sigma = 1.0;
    //const kernel = agenerate2DGaussianKernel2(kernelSize, 1.0);

    //const kernel = generateAveragingKernel(kernelSize);

    var divisor = kernel.reduce((sum, row) => sum + row.reduce((rowSum, value) => rowSum + value, 0), 0);

    // Apply the kernel to the pixel data
    for (var i = 0; i < pixels.length; i += 4) {
        var sumR = 0,
            sumG = 0,
            sumB = 0;

        for (var j = 0; j < kernelSize; j++) {
            for (var k = 0; k < kernelSize; k++) {
                var rowIndex = i + (j - Math.floor(kernelSize / 2)) * 4 + (k - Math.floor(kernelSize / 2)) * width * 4;
                var factor = kernel[j][k];

                sumR += pixels[rowIndex] * factor;
                sumG += pixels[rowIndex + 1] * factor;
                sumB += pixels[rowIndex + 2] * factor;
            }
        }

        pixels[i] = clamp(sumR / divisor, 0, 255);
        pixels[i + 1] = clamp(sumG / divisor, 0, 255);
        pixels[i + 2] = clamp(sumB / divisor, 0, 255);
    }

    // Put the modified pixel data back onto the canvas
    ctx.putImageData(imageData, 0, 0);
};

const applywhite = (ctx, width, height) => {
    // Get the pixel data from the canvas
    var imageData = ctx.getImageData(0, 0, width, height);
    var pixels = imageData.data;

    // Apply grayscale compensation with specified segments
    for (var i = 0; i < pixels.length; i += 4) {
        if (pixels[i] > 0 && pixels[i] < 255) {
            pixels[i] = 0;
        }
        if (pixels[i + 1] > 0 && pixels[i + 1] < 255) {
            pixels[i + 1] = 0;
        }
        if (pixels[i + 2] > 0 && pixels[i + 2] < 255) {
            pixels[i + 2] = 0;
        }
    }

    // Put the modified pixel data back onto the canvas
    ctx.putImageData(imageData, 0, 0);
};

class ScreenShot {
    constructor({ editor }) {
        this.editor = editor;
        this.box = { x: 0, y: 0, z: 0 };
    }

    init = ({ x, y, z }) => {
        this.box = { x, y, z };
    };

    setViewsPosition = () => {
        const { x, y } = this.box;
        const dx = x * 0.5;
        const dy = y * 0.5;
        const cx = 0 / 2;
        const cy = 0 / 2;

        const left = cx - dx;
        const right = cx + dx;
        const top = cy + dy;
        const bottom = cy - dy;

        this.editor.camera.position.set(0, 0, 200);
        this.editor.camera.updateProjectionMatrix();
        this.editor.control.target.set(0, 0, 0);
        // this.editor.control.resetViewPort();
        this.editor.camera.projectionMatrix.makeOrthographic(left, right, top, bottom, -10000, 10000);
        this.editor.camera.projectionMatrixInverse.copy(this.editor.camera.projectionMatrix).invert();
        this.editor.camera.zoom = 6;
    };

    createCanvasForImage = (img) => {
        const canvas = document.createElement('canvas');
        canvas.width = canvasWidth;
        canvas.height = canvasHeight;
        const ctx = canvas.getContext('2d');
        //ctx.filter = 'blur(1px)';
        //ctx.imageSmoothingEnabled = true;
        //ctx.imageSmoothingQuality = 'high';
        ctx.drawImage(img, 0, 0);
        return canvas;
    };

    applyAntiAliasing = (imageData) => {
        var pixels = imageData.data;
        for (var i = 0; i < pixels.length; i += 4) {
            var avg = (pixels[i] + pixels[i + 1] + pixels[i + 2]) / 3;
            pixels[i] = avg;
            pixels[i + 1] = avg;
            pixels[i + 2] = avg;
        }
    };

    aliasing = (canvas, newImageData, imageData, scale) => {
        for (let y = 0; y < canvas.height; y++) {
            for (let x = 0; x < canvas.width; x++) {
                const sourceIndex = (y * canvas.width + x) * 4;
                const color = [
                    imageData.data[sourceIndex],
                    imageData.data[sourceIndex + 1],
                    imageData.data[sourceIndex + 2],
                    imageData.data[sourceIndex + 3]
                ];

                for (let dy = 0; dy < scale; dy++) {
                    for (let dx = 0; dx < scale; dx++) {
                        const destIndex = ((y * scale + dy) * canvas.width * scale + (x * scale + dx)) * 4;
                        newImageData.data[destIndex] = color[0];
                        newImageData.data[destIndex + 1] = color[1];
                        newImageData.data[destIndex + 2] = color[2];
                        newImageData.data[destIndex + 3] = color[3];
                    }
                }
            }
        }
    };

    getImage2 = (fileName) => {
        const canvas = this.editor.renderer.domElement;
        const ctx = canvas.getContext('2d');

        this.setViewsPosition();
        this.editor.render();
        const oc = document.createElement('canvas');
        const octx = oc.getContext('2d');
        oc.width = canvasWidth;
        oc.height = canvasHeight;

        // step 2: pre-filter image using steps as radius
        const steps = (oc.width / canvas.width) >> 1;
        octx.filter = `blur(${steps}px)`;
        octx.drawImage(oc, 0, 0);

        // step 3, draw scaled
        ctx.drawImage(oc, 0, 0, oc.width, oc.height, 0, 0, canvas.width, canvas.height);
        const link = document.createElement('a');

        if (typeof link.download === 'string') {
            document.body.appendChild(link); // Firefox requires the link to be in the body
            link.download = fileName;
            link.href = oc.toDataURL('image/png', 1.0);
            link.click();
            document.body.removeChild(link); // remove the link when done
        }
    };

    getImage = (fileName) => {
        this.setViewsPosition();
        this.editor.render();
        this.editor.camera.up.set(0, 1, 0);
        const canvas = document.createElement('canvas');

        canvas.width = this.editor.renderer.domElement.width;
        canvas.height = this.editor.renderer.domElement.height;

        const canvasNode = this.editor.renderer.domElement;
        const cc = this.createCanvasForImage(canvasNode);

        const ctx = canvas.getContext('2d');

        //ctx.imageSmoothingEnabled = true;
        //ctx.imageSmoothingQuality = 'high';
        ctx.translate(canvas.width, canvas.height);
        ctx.scale(-1, -1);

        ctx.drawImage(this.editor.renderer.domElement, 0, 0, canvas.width, canvas.height);

        // 获取ImageData
        const imageData = ctx.getImageData(0, 0, canvas.width, canvas.height);

        const scale = 2;
        const newImageData = ctx.createImageData(canvas.width * scale, canvas.height * scale);

        // 对ImageData进行抗锯齿处理
        //this.aliasing(canvas, newImageData, imageData, scale);

        //applyEdgeBlur(ctx, canvas.width, canvas.height, 3);
        //ctx.imageSmoothingEnabled = true;

        //applyFXAA(canvas, ctx, 3, this.editor.scene);
        //applyEdgeBlur(ctx, canvas.width, canvas.height, 5);

        //ctx.filter = `blur(9px)`;
        // const compensationValue = 2;
        //applyGrayscaleCompensation(ctx, canvas.width, canvas.height, compensationValue);

        //applywhite(ctx, canvas.width, canvas.height);

        // 将处理后的ImageData绘制回Canvas
        // ctx.putImageData(imageData, 0, 0);

        const link = document.createElement('a');
        if (typeof link.download === 'string') {
            document.body.appendChild(link); // Firefox requires the link to be in the body
            link.download = fileName;
            link.href = canvas.toDataURL('image/jepg', 0.1);
            link.click();
            document.body.removeChild(link); // remove the link when done
        }

        this.editor.camera.up.set(0, -1, 0);
        return;
        // ctx.drawImage(canvasNode, 0, 0, canvasWidth, canvasHeight);


        const screenshot = this.editor.renderer.domElement.toDataURL();
        const a = document.createElement('a');
        a.download = fileName;
        a.href = screenshot;

        //const cc = this.createCanvasForImage(canvasNode);
        ctx.drawImage(cc, 0, 0);

        /*
        pica.resize(cc, canvas, {
            unsharpAmount: 0,
            unsharpRadius: 0,
            unsharpThreshold: 0
        })
            .then((result) => pica.toBlob(result, 'image/jpeg'))
            .then((blob) => {
                const url = window.URL.createObjectURL(blob);
                const link = document.createElement('a');
                link.href = url;
                link.download = fileName;
                link.click();
                window.URL.revokeObjectURL(url);
            });

        
        ctx.drawImage(canvasNode, 0, 0, canvasWidth, canvasHeight);
*/
        // const screenshot = this.editor.renderer.domElement.toDataURL();
        //const link = document.createElement('a');
        if (typeof link.download === 'string') {
            document.body.appendChild(link); // Firefox requires the link to be in the body
            link.download = fileName;
            link.href = cc.toDataURL('image/png');
            link.click();
            document.body.removeChild(link); // remove the link when done
        }
    };
}

export default ScreenShot;